Repository logo
 
Publication

Probabilistic consensus clustering using evidence accumulation

dc.contributor.authorLourenço, André Ribeiro
dc.contributor.authorBulo, Samuel Rota
dc.contributor.authorRebagliati, Nicola
dc.contributor.authorFred, Ana
dc.contributor.authorFigueiredo, Mário
dc.contributor.authorPelillo, Marcello
dc.date.accessioned2016-02-25T17:11:54Z
dc.date.available2016-02-25T17:11:54Z
dc.date.issued2015-01
dc.description.abstractClustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.pt_PT
dc.identifier.citationLOURENÇO, André; [et al.] - Probabilistic consensus clustering using evidence accumulation. Machine Learning. ISSN. 0885-6125. Vol. 98, N.º 1-2, SI (2015), pp. 331-357pt_PT
dc.identifier.doi10.1007/s10994-013-5339-6pt_PT
dc.identifier.issn0885-6125
dc.identifier.issn1573-0565
dc.identifier.urihttp://hdl.handle.net/10400.21/5750
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relation.ispartofseriesSI;
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs10994-013-5339-6pt_PT
dc.subjectConsensus clusteringpt_PT
dc.subjectEvidence Accumulationpt_PT
dc.subjectEnsemble clusteringpt_PT
dc.subjectBregman divergencept_PT
dc.titleProbabilistic consensus clustering using evidence accumulationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage357pt_PT
oaire.citation.issue1-2pt_PT
oaire.citation.startPage331pt_PT
oaire.citation.volume98pt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Probabilistic consensus clustering using evidence accumulation.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: