Repository logo
 
Publication

Multi-step short-term solar energy forecasting using Fourier-enhanced BiLSTM and neural additive models

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSeman, Laio Oriel
dc.contributor.authorStefenon, Stefano Frizzo
dc.contributor.authorYow, Kin-Choong
dc.contributor.authorCoelho, Leandro dos Santos
dc.contributor.authorMariani, Viviana Cocco
dc.date.accessioned2025-11-25T08:23:40Z
dc.date.available2025-11-25T08:23:40Z
dc.date.issued2026-02-01
dc.description.abstractAccurate short and medium-term forecasting is important for mitigating uncertainty and enabling efficient energy grid management. While traditional machine learning and deep learning models offer improved accuracy, they often lack interpretability. To address these limitations, this study proposes a hybrid forecasting framework, called FNO-BiLSTM-NAM, that combines a Fourier Neural Operator (FNO) to extract spectral–temporal features, a Bidirectional Long Short-Term Memory (BiLSTM) network to model sequential dependencies, and a Neural Additive Model (NAM) to quantify feature-wise contributions. The model incorporates multi-scenario forecasting to support energy operators under different uncertainty levels. Experiments conducted on a dataset from a 5 MW PhotoVoltaic (PV) plant demonstrate the superiority of the model. For a 6-hour forecast horizon, the proposed FNO-BiLSTM-NAM model achieved a mean absolute error of 0.0712 and mean squared error of 0.0092, outperforming benchmark models across short- to medium-term horizons. Furthermore, the spectral analysis of the FNO revealed low-pass filtering behavior, highlighting the ability of the model to suppress high-frequency noise. Comparative experiments with five machine and deep learning baseline models confirm the robustness and generalization capacity of the framework. These results underscore the potential of the proposed model for enhancing PV energy forecasting accuracy while maintaining transparency across dynamic operating conditions.eng
dc.identifier.citationSeman, L. O., Stefenon, S. F., Yow, K. C., Coelho, L. S., & Mariani, V. C. (2026). Multi-step short-term solar energy forecasting using Fourier-enhanced BiLSTM and neural additive models. Renewable Energy, 257 (1-20). https://doi.org/10.1016/j.renene.2025.124738
dc.identifier.doi10.1016/j.renene.2025.124738
dc.identifier.eissn1879-0682
dc.identifier.issn0960-1481
dc.identifier.urihttp://hdl.handle.net/10400.21/22285
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier BV
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0960148125024024?via%3Dihub
dc.relation.ispartofRenewable Energy
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPhotovoltaic energy forecasting
dc.subjectSolar energy
dc.subjectMeteorological data
dc.subjectMulti-step forecasting
dc.subjectNeural additive model
dc.subjectMachine learning
dc.titleMulti-step short-term solar energy forecasting using Fourier-enhanced BiLSTM and neural additive modelseng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage20
oaire.citation.startPage1
oaire.citation.titleRenewable Energy
oaire.citation.volume257
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multi-step_SFSefenon.pdf
Size:
5.71 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: