Repository logo
 
Publication

A multivariable prediction model to select colorectal surgical patients for co-management

dc.contributor.authorBayão Horta, A.
dc.contributor.authorBrás-Geraldes, Carlos
dc.contributor.authorSalgado, Cátia
dc.contributor.authorVieira, Susana
dc.contributor.authorXavier, Miguel
dc.contributor.authorPapoila, Ana Luisa
dc.date.accessioned2022-07-14T10:19:42Z
dc.date.available2022-07-14T10:19:42Z
dc.date.issued2021-02
dc.description.abstractIntroduction: Increased life expectancy leads to older and frailer surgical patients. Co-management between medical and surgical specialities has proven favourable in complex situations. Selection of patients for co-management is full of difficulties. The aim of this study was to develop a clinical decision support tool to select surgical patients for co-management. Material and Methods: Clinical data was collected from patient electronic health records with an ICD-9 code for colorectal surgery from January 2012 to December 2015 at a hospital in Lisbon. The outcome variable consists in co-management signalling. A dataset from 344 patients was used to develop the prediction model and a second data set from 168 patients was used for external validation. Results: Using logistic regression modelling the authors built a five variable (age, burden of comorbidities, ASA-PS status, surgical risk and recovery time) predictive referral model for co-management. This model has an area under the curve (AUC) of 0.86 (95% CI: 0.81 - 0.90), a predictive Brier score of 0.11, a sensitivity of 0.80, a specificity of 0.82 and an accuracy of 81.3%. Discussion: Early referral of high-risk patients may be valuable to guide the decision on the best level of post-operative clinical care. We developed a simple bedside decision tool with a good discriminatory and predictive performance in order to select patients for comanagement. Conclusion: A simple bed-side clinical decision support tool of patients for co-management is viable, leading to potential improvement in early recognition and management of postoperative complications and reducing the ‘failure to rescue’. Generalizability to other clinical settings requires adequate customization and validation.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationHORTA, Alexandra Bayão; [et al] – A multivariable prediction model to select colorectal surgical patients for co-management. Acta Médica Portuguesa. ISSN 0870-399X. Vol. 34, N.º 2 (2021), pp. 118-127.pt_PT
dc.identifier.doi10.20344/amp.12996pt_PT
dc.identifier.eissn1646-0758
dc.identifier.issn0870-399X
dc.identifier.urihttp://hdl.handle.net/10400.21/14834
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherOrdem dos Médicospt_PT
dc.relation.publisherversionhttps://actamedicaportuguesa.com/revista/index.php/amp/article/view/12996/0pt_PT
dc.subjectColorectal surgery/methodspt_PT
dc.subjectCooperative behaviorpt_PT
dc.subjectDecision support systemspt_PT
dc.subjectClinicalpt_PT
dc.subjectFailure to rescuept_PT
dc.subjectHealth carept_PT
dc.subjectPatient selectionpt_PT
dc.titleA multivariable prediction model to select colorectal surgical patients for co-managementpt_PT
dc.title.alternativeUm modelo de predição para seleccionar para co-gestão doentes de cirurgia colo-rectalpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage127pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage118pt_PT
oaire.citation.titleActa Médica Portuguesapt_PT
oaire.citation.volume34pt_PT
person.familyNameBayão Horta
person.familyNameBrás-Geraldes
person.familyNameSalgado
person.familyNamePapoila
person.givenNameAlexandra
person.givenNameCarlos
person.givenNameCátia
person.givenNameAna Luisa
person.identifier.ciencia-id0310-4372-12BE
person.identifier.ciencia-id081A-ABD6-13DD
person.identifier.ciencia-id251C-0273-1068
person.identifier.orcid0000-0002-8696-6089
person.identifier.orcid0000-0002-1551-6531
person.identifier.orcid0000-0003-4088-9468
person.identifier.orcid0000-0002-2918-8364
person.identifier.ridA-4358-2019
person.identifier.ridS-2515-2016
person.identifier.scopus-author-id57197972944
person.identifier.scopus-author-id55835809200
person.identifier.scopus-author-id6507532321
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication3128d3c1-929f-4f25-b147-cf7a87657381
relation.isAuthorOfPublication2e79cc97-7263-448f-b230-3bdc4ebefa9b
relation.isAuthorOfPublication9feaf416-06a4-4690-849b-c1f46eea5d74
relation.isAuthorOfPublication287e5ccb-e43a-42c7-a632-df8b2b0fd985
relation.isAuthorOfPublication.latestForDiscovery287e5ccb-e43a-42c7-a632-df8b2b0fd985

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A multivariable_CGeraldes.pdf
Size:
780.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: