Repository logo
 
Publication

GPU implementation of a hyperspectral coded aperture algorithm for compressive sensing

dc.contributor.authorBernabe, Sergio
dc.contributor.authorMartin, Gabriel
dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José
dc.contributor.authorPlaza, Antonio
dc.contributor.authorSilva, Vítor
dc.date.accessioned2016-04-18T15:43:31Z
dc.date.available2016-04-18T15:43:31Z
dc.date.issued2015
dc.description.abstractThis paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.pt_PT
dc.identifier.citationBERNABE, Sergio; [et al] - GPU implementation of a hyperspectral coded aperture algorithm for compressive sensing. IGARSS 2015 - IEEE International Geoscience and Remote Sensing Symposium. 2015. ISBN 978-1-4799-7929-5. Pp. 521-524pt_PT
dc.identifier.doi10.1109/IGARSS.2015.7325815pt_PT
dc.identifier.isbn978-1-4799-7929-5
dc.identifier.urihttp://hdl.handle.net/10400.21/6018
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEE - Institute of Electrical and Electronics Engineers Inc.pt_PT
dc.subjectHyperspectral imagingpt_PT
dc.subjectCoded aperturept_PT
dc.subjectCompressive sensingpt_PT
dc.subjectCSpt_PT
dc.subjectGraphics processing unitspt_PT
dc.subjectGPUSpt_PT
dc.titleGPU implementation of a hyperspectral coded aperture algorithm for compressive sensingpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceMilan, Italypt_PT
oaire.citation.endPage524pt_PT
oaire.citation.startPage521pt_PT
oaire.citation.titleIGARSS 2015, IEEE International Geoscience and Remote Sensing Symposiumpt_PT
person.familyNameNascimento
person.familyNameDias da Silva
person.givenNameJose
person.givenNameVítor
person.identifier.ciencia-id6912-6F61-1964
person.identifier.ciencia-idA912-8252-99D4
person.identifier.orcid0000-0002-5291-6147
person.identifier.orcid0000-0002-1862-1230
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublicationd0763cf1-6a95-4270-9428-53ea86b8cf35
relation.isAuthorOfPublication.latestForDiscoveryd0763cf1-6a95-4270-9428-53ea86b8cf35

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
GPU IMPLEMENTATION OF A HYPERSPECTRAL CODED APERTURE ALGORITHM FOR.pdf
Size:
366.42 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: