Repository logo
 
Publication

Exploiting the bin-class histograms for feature selection on discrete data

dc.contributor.authorJ. Ferreira, Artur
dc.contributor.authorFigueiredo, Mário A. T.
dc.date.accessioned2016-04-21T11:32:07Z
dc.date.available2016-04-21T11:32:07Z
dc.date.issued2015
dc.description.abstractIn machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.pt_PT
dc.identifier.citationFERREIRA, Artur J.; FIGUEIREDO, Mário A. T. - Exploiting the Bin-Class Histograms for Feature Selection on Discrete Data. In 7th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA). Santiago de Compostela: SPRINGER-VERLAG BERLIN, 2015. ISBN. 978-3-319-19390-8. Vol. 9117, pp. 345-353pt_PT
dc.identifier.doi10.1007/978-3-319-19390-8_39pt_PT
dc.identifier.isbn978-3-319-19390-8
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10400.21/6075
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer-Verlag Berlinpt_PT
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-319-19390-8_39pt_PT
dc.subjectFeature selectionpt_PT
dc.subjectFeature discretizationpt_PT
dc.subjectDiscrete featurespt_PT
dc.subjectBin-class histogrampt_PT
dc.subjectMatrix normpt_PT
dc.subjectSupervised learningpt_PT
dc.subjectClassificationpt_PT
dc.titleExploiting the bin-class histograms for feature selection on discrete datapt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceSantiago de Compostelapt_PT
oaire.citation.endPage353pt_PT
oaire.citation.startPage345pt_PT
oaire.citation.title7th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)pt_PT
oaire.citation.volume9117pt_PT
person.familyNameFerreira
person.givenNameArtur
person.identifier1049438
person.identifier.ciencia-id091A-96FB-A88C
person.identifier.orcid0000-0002-6508-0932
person.identifier.ridAAL-4377-2020
person.identifier.scopus-author-id35315359300
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication734bfe75-0c68-4cdf-8a87-2aef3564f5bd
relation.isAuthorOfPublication.latestForDiscovery734bfe75-0c68-4cdf-8a87-2aef3564f5bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Exploiting the Bin-Class Histograms for Feature.pdf
Size:
436.82 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: