Repository logo
 
Publication

Metaheuristhic approach to the Holt-Winters optimal short term load forecast

dc.contributor.authorEusébio, Eduardo
dc.contributor.authorCamus, Cristina Inês
dc.contributor.authorCurvelo, Carolina
dc.date.accessioned2015-05-14T11:12:50Z
dc.date.available2015-05-14T11:12:50Z
dc.date.issued2015-03
dc.description.abstractElectricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.por
dc.identifier.urihttp://hdl.handle.net/10400.21/4540
dc.language.isoengpor
dc.peerreviewednopor
dc.subjectElectricity demandpor
dc.subjectLoad forecastpor
dc.subjectCombinatorial optimizationpor
dc.subjectEvolutionary algorithmspor
dc.titleMetaheuristhic approach to the Holt-Winters optimal short term load forecastpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceLa Coruñapor
oaire.citation.titleInternational Conference on Renewable Energies and Power Quality, ICREPQ'15por
person.familyNameEusébio
person.familyNameCamus
person.givenNameEduardo
person.givenNameCristina Inês
person.identifier.ciencia-id4414-1BB5-34CB
person.identifier.orcid0000-0001-5939-5420
person.identifier.orcid0000-0002-1118-6467
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication760ec7d2-85ba-4629-b79c-a47707532d3e
relation.isAuthorOfPublication47c01607-bd8a-48be-a867-08b0530bd914
relation.isAuthorOfPublication.latestForDiscovery760ec7d2-85ba-4629-b79c-a47707532d3e

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: