Repository logo
 
Publication

Fast convolutional neural networks in low density FPGAs using zero-skipping and weight pruning

dc.contributor.authorVéstias, Mário
dc.contributor.authorDuarte, Rui Policarpo
dc.contributor.authorDe Sousa, Jose
dc.contributor.authorCláudio de Campos Neto, Horácio
dc.date.accessioned2019-11-25T11:15:23Z
dc.date.available2019-11-25T11:15:23Z
dc.date.issued2019-11-09
dc.description.abstractEdge devices are becoming smarter with the integration of machine learning methods, such as deep learning, and are therefore used in many application domains where decisions have to be made without human intervention. Deep learning and, in particular, convolutional neural networks (CNN) are more efficient than previous algorithms for several computer vision applications such as security and surveillance, where image and video analysis are required. This better efficiency comes with a cost of high computation and memory requirements. Hence, running CNNs in embedded computing devices is a challenge for both algorithm and hardware designers. New processing devices, dedicated system architectures and optimization of the networks have been researched to deal with these computation requirements. In this paper, we improve the inference execution times of CNNs in low density FPGAs (Field-Programmable Gate Arrays) using fixed-point arithmetic, zero-skipping and weight pruning. The developed architecture supports the execution of large CNNs in FPGA devices with reduced on-chip memory and computing resources. With the proposed architecture, it is possible to infer an image in AlexNet in 2.9 ms in a ZYNQ7020 and 1.0 ms in a ZYNQ7045 with less than 1% accuracy degradation. These results improve previous state-of-the-art architectures for CNN inference.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVÉSTIAS, Mário P.; [et al] – Fast convolutional neural networks in low density FPGAs using zero-skipping and weight pruning. Electronics. ISSN 2079-9292. Vol. 8, N.º 11 (2019), pp. 1-24pt_PT
dc.identifier.doi10.3390/electronics8111321pt_PT
dc.identifier.issn2079-9292
dc.identifier.urihttp://hdl.handle.net/10400.21/10735
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationUID/CEC/50021/2019 - FCTpt_PT
dc.subjectDeep learningpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.subjectSmart edge devicespt_PT
dc.subjectZero-skippingpt_PT
dc.subjectPruningpt_PT
dc.subjectFPGApt_PT
dc.titleFast convolutional neural networks in low density FPGAs using zero-skipping and weight pruningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage24pt_PT
oaire.citation.issue11pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleElectronicspt_PT
oaire.citation.volume8pt_PT
person.familyNameVéstias
person.familyNameDuarte
person.familyNamede Sousa
person.familyNameCláudio de Campos Neto
person.givenNameMário
person.givenNameRui
person.givenNameJose
person.givenNameHorácio
person.identifier.ciencia-id4717-C2C7-3F2C
person.identifier.ciencia-idB91E-770F-19A3
person.identifier.ciencia-idBE18-E262-E0EC
person.identifier.ciencia-id9915-3BDF-5C35
person.identifier.orcid0000-0001-8556-4507
person.identifier.orcid0000-0002-7060-4745
person.identifier.orcid0000-0001-7525-7546
person.identifier.orcid0000-0002-3621-8322
person.identifier.ridH-9953-2012
person.identifier.ridI-4402-2015
person.identifier.ridL-6859-2015
person.identifier.scopus-author-id14525867300
person.identifier.scopus-author-id24823991600
person.identifier.scopus-author-id7102813024
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa7d22b29-c961-45ac-bc09-cd5e1002f1e8
relation.isAuthorOfPublicationf2b4b9e6-6c89-48c7-bc83-62d2e98a787b
relation.isAuthorOfPublicationd98a4d45-2d45-42ec-9f1d-14775723709b
relation.isAuthorOfPublication38334d5e-83e8-494c-a9e0-396299376d97
relation.isAuthorOfPublication.latestForDiscoverya7d22b29-c961-45ac-bc09-cd5e1002f1e8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fast_MVestias.pdf
Size:
623.36 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: