Repository logo
 
Publication

Non-proportional mixed mode plastic zones via finite elements and artificial neural networks

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
dc.contributor.authorInfante, Virgínia
dc.contributor.authorMiguel Gomes Simões Baptista, Ricardo
dc.date.accessioned2025-08-21T13:37:54Z
dc.date.available2025-08-21T13:37:54Z
dc.date.issued2025-02
dc.description.abstractThe plastic zone developed around a fatigue crack tip can affect both fatigue and fracture material behaviour. Predicting the plastic zone shape and size under cyclic conditions can, therefore, enhance fatigue crack propagation analysis. While there are theoretical solutions for the elastic stress and strain fields under pure or mixed mode conditions around the crack tip, solutions for plastic fields must be determined using experimental or numerical approaches. The Compact Tension Shear (CTS) specimen has been extensively used to analyse plastic zones under proportional conditions, but when non-proportional conditions are applied the number of necessary analyses for a reasonable understanding of the plastic zone shape and size around the crack tip can increase exponentially. To address this problem, a combined approach was used to reduce the number of required plastic zone simulations. First, a hand selected number of loading configurations were simulated using the Finite Element Method (FEM), predicting the plastic zone shape and size. Then, an Artificial Neural Network (ANN) was trained to predict the plastic zone under different conditions. Using only 18 configurations for 3 different loading conditions, the trained ANN was able to accurately predict the plastic zone shape and size for both tensile and shear propagation modes. The network can now be used to predict the plastic zone influence on fatigue and fracture behaviour, without the need for further numerical analysis. The paper results also show that crack propagation direction can be correlated and predicted using the applied loads and the resulting plastic zone.eng
dc.identifier.citationInfante, V., & Baptista, R. (2025). Non-proportional mixed mode plastic zones via finite elements and artificial neural networks. Theorical and Applied Fracture Mechanics, 135, 1-19. https://doi.org/10.1016/j.tafmec.2024.104777
dc.identifier.doihttps://doi.org/10.1016/j.tafmec.2024.104777
dc.identifier.eissn1872-7638
dc.identifier.issn0167-8442
dc.identifier.urihttp://hdl.handle.net/10400.21/22020
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationUIDB/50022/2020
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0167844224005275?via%3Dihub
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMixed mode
dc.subjectPlastic zone
dc.subjectFinite element method
dc.subjectArtificial neural networks
dc.titleNon-proportional mixed mode plastic zones via finite elements and artificial neural networkseng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage19
oaire.citation.startPage1
oaire.citation.titleTheorical and Applied Fracture Mechanics
oaire.citation.volume135
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameMiguel Gomes Simões Baptista
person.givenNameRicardo
person.identifierN-6383-2013
person.identifier.ciencia-id4B19-FC15-14D9
person.identifier.orcid0000-0002-5955-8418
person.identifier.scopus-author-id7005968277
relation.isAuthorOfPublicationd16b9294-0a46-4eed-970a-9ecf1273a1bd
relation.isAuthorOfPublication.latestForDiscoveryd16b9294-0a46-4eed-970a-9ecf1273a1bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Non-proportional_RBaptista.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: