Repository logo
 
Publication

From centrosomal microtubule anchoring and organization to basal body positioning: TBCCD1 an elusive protein

dc.contributor.authorCarmona, Bruno
dc.contributor.authorCamelo, Carolina
dc.contributor.authorMehraz, Manon
dc.contributor.authorLemullois, Michel
dc.contributor.authorFerreira, David C.
dc.contributor.authorNolasco, Sofia
dc.contributor.authorLince-Faria, Mariana
dc.contributor.authorMarino, H. Susana
dc.contributor.authorBettencourt-Dias, Mónica
dc.contributor.authorTassin, Anne-Marie
dc.contributor.authorKoll, France
dc.contributor.authorSoares, Helena
dc.date.accessioned2019-11-20T13:08:32Z
dc.date.available2019-11-20T13:08:32Z
dc.date.issued2019-08
dc.description.abstractCilia are microtubule-based organelles that protrude from the cell surface and fulfill critical motility and sensory functions being required for normal embryonic development and for homeostasis of human adult tissues. Cilia loss or dysfunction is associated with human ciliopathies. At their base cilia have a centriole/basal body (BB), which can be derived from the centrosome and assembles the ciliary axoneme. This process requires the correct positioning/anchoring of the centrosome’s mother centriole/BB to the cell membrane. A clear picture of the different signals and players involved in centrosome positioning/anchoring is still not available. Published work from our group identified a new centrosomal TBCC domain-containing human protein (TBCCD1) that is involved in centrosome correct positioning and primary cilia assembly. In mammalian cells, TBCCD1 is observed at pericentriolar satellites, in basal bodies of primary and motile cilia and at primary cilia ciliopathy hot domain, the transition zone. Super-resolution microscopy shows that TBCCD1 is localized at the distal region of the centrosome and its depletion dramatically affects the centrosome subdistal protein CEP170, a component of primary and motile cilia basal feet. By doing a proximity-dependent biotin identification (BioID-MS) screen for TBCCD1 interactors several well-known proteins encoded by ciliopathy genes were identified, e.g. the centrosomal proteins OFD1 and Moonraker/KIAA0753 associated with Digital Syndrome 1 and Joubert syndrome, respectively. OFD1 and Moonraker are required for the maintenance of centrosome structure and both proteins localization is dramatically disturbed by TBCCD1 depletion. To clarify the role of human TBCCD1 in cilia biogenesis we used the ciliate Paramecium. Noteworthy, in Paramecium TBCCD1 knockdown causes abnormal basal body associated rootlets organization, anomalous BB positioning/anchoring defects. Our data using human cells and the ciliate Paramecium support a role of TBCCD1 in centrosome structure maintenance and BB anchoring at the cell membrane. The Paramecium phenotypes confirm that TBCCD1 is a new candidate to a ciliopathic gene probably by founding the TBCCD1/Moonraker/OFD1 functional conserved module required for cilia assembly.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCarmona B, Camelo C, Mehraz M, Lemullois M, Nolasco S, Soares H, et al. From centrosomal microtubule anchoring and organization to basal body positioning: TBCCD1 an elusive protein. In: VIII European Congress of Protistology – ISOP Joint Meeting, Rome (Italy), 28th July to 2nd August 2019. p. 55.pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.21/10719
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttp://www.ecop2019.org/pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectCentrosomal microtubulept_PT
dc.subjectTBCCD1pt_PT
dc.subjectCiliate Parameciumpt_PT
dc.subjectCiliopathic genept_PT
dc.titleFrom centrosomal microtubule anchoring and organization to basal body positioning: TBCCD1 an elusive proteinpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceRomept_PT
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
From centrosomal microtubule anchoring and organization to basal body positioning_TBCCD1 an elusive protein.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: