Repository logo
 
Publication

A new approach for rapid detection of bioactive compounds using MIR spectroscopy and machine learning algorithms

dc.contributor.authorSampaio, P. N.
dc.contributor.authorDuarte, Fernando B.
dc.contributor.authorCalado, Cecília
dc.date.accessioned2024-03-25T15:43:08Z
dc.date.available2024-03-25T15:43:08Z
dc.date.issued2023-06
dc.description.abstractNowadays, microbial infections and resistance to antibiotic drugs are the biggest challenges, which threaten the health of societies. Due to several pharmacological activities associated with Cynara cardunculus, such as hepatoprotective, antioxidative, anticarcinogenic, hypocholesterolemic, antibacterial, anti-HIV, among others, extracts from seeds, leaves, and flowers were tested in Escherichia coli cells. The sensibility of the Mid-infrared (MIR) spectroscopy allowed to perform a detailed analysis of the antimicrobial action of extracts in terms of their biomolecular changes. A comparative model based on several commercial antibiotics such as metronidazole, kanamycin, clarithromycin, chloramphenicol, and ampicillin, was developed. The clustering analysis was performed using unsupervised algorithms such as Principal Component Analysis (PCA), and Kohonen Self-Organizing Maps (SOM). The extracts characterized with antioxidant activity were clustered with antibiotics and presented a promissory antimicrobial activity. According to this preliminary result, it is possible to use the MIR spectroscopy and machine learning algorithm to discover promissory bio compounds characterized by antimicrobial properties, allowing to develop a platform to discover new bioactive molecules, reducing time and costs.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationP.N. Sampaio, F.B. Duarte, C.R.C. Calado. A new approach for rapid detection of bioactive compounds using MIR spectroscopy and machine learning algorithms. 2023 IEEE 7th Portuguese Meeting on Bioengineering, ENBENG 2023. Institute of Electrical and Electronics Engineers (IEEE), 22-23 June 2023, Porto University, Porto, Portugal. DOI: 10.1109/ENBENG58165.2023.10175326pt_PT
dc.identifier.doi10.1109/ENBENG58165.2023.10175326pt_PT
dc.identifier.isbn979-8-3503-2257-6
dc.identifier.urihttp://hdl.handle.net/10400.21/17216
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)pt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10175326pt_PT
dc.subjectMIR spectroscopypt_PT
dc.subjectbioactive compoundspt_PT
dc.titleA new approach for rapid detection of bioactive compounds using MIR spectroscopy and machine learning algorithmspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePortugalpt_PT
oaire.citation.endPage136pt_PT
oaire.citation.startPage132pt_PT
oaire.citation.titleIEEE 7th Portuguese Meeting on Bioengineering, ENBENG 2023pt_PT
person.familyNameSampaio
person.familyNameDuarte
person.familyNameCalado
person.givenNamePedro
person.givenNameFernando
person.givenNameCecília
person.identifier1251979
person.identifier130332
person.identifier.ciencia-idAF12-6ABA-43D8
person.identifier.ciencia-id9418-E320-3177
person.identifier.orcid0000-0003-2917-4904
person.identifier.orcid0000-0002-5318-7097
person.identifier.orcid0000-0002-5264-9755
person.identifier.ridE-2102-2014
person.identifier.scopus-author-id24178064100
person.identifier.scopus-author-id7006547054
person.identifier.scopus-author-id6603163260
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication303f3e22-ec1a-4243-9ded-98c647776e6a
relation.isAuthorOfPublication417b7936-49d3-40b0-875d-7addbc7e9e5a
relation.isAuthorOfPublicatione8577257-c64c-4481-9b2b-940fedb360cc
relation.isAuthorOfPublication.latestForDiscovery303f3e22-ec1a-4243-9ded-98c647776e6a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A new approach.pdf
Size:
446.94 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: