Name: | Description: | Size: | Format: | |
---|---|---|---|---|
6.2 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Objective: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. Material and methods: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe, and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG, and KNN. Results: The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity, and fatality of COVID-19 of 93%, 94%, and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine, and 5,6-dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. Conclusion: The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity, and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients’ serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.
Description
Keywords
COVID-19 Fatality Severity Diagnosis Biomarker Machine learning
Citation
Cobre AF, Surek M, Stremel DP, Fachi MM, Borba HH, Tonin FS, et al. Diagnosis and prognosis of COVID-19 employing analysis of patients’ plasma and serum via LC-MS and machine learning. Comput Biol Med. 2022;146:105659.
Publisher
Elsevier