Logo do repositório
 
Miniatura indisponível
Publicação

Fast unsupervised extraction of endmembers spectra from hyperspectral data

Utilize este identificador para referenciar este registo.

Orientador(es)

Resumo(s)

Linear unmixing decomposes an hyperspectral image into a collection of re ectance spectra, called endmember signatures, and a set corresponding abundance fractions from the respective spatial coverage. This paper introduces vertex component analysis, an unsupervised algorithm to unmix linear mixtures of hyperpsectral data. VCA exploits the fact that endmembers occupy vertices of a simplex, and assumes the presence of pure pixels in data. VCA performance is illustrated using simulated and real data. VCA competes with state-of-the-art methods with much lower computational complexity.

Descrição

Palavras-chave

Hyperspectral imagery Unsupervised endmember extraction Vertex component analysis Spectral mixture model Linear unmixing

Contexto Educativo

Citação

NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Fast unsupervised extraction of endmembers spectra from hyperspectral data. Proceedings of SPIE - Remote Sensing for Environmental Monitoring, GIS Applications, and Geology III. ISSN 0277-786X. Vol. 5239. 314-321, 2004

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

SPIE

Licença CC

Métricas Alternativas