Publication
Feature Discretization with Relevance and Mutual Information Criteria
dc.contributor.author | J. Ferreira, Artur | |
dc.contributor.author | Figueiredo, Mário A. T. | |
dc.date.accessioned | 2016-04-21T11:14:57Z | |
dc.date.available | 2016-04-21T11:14:57Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals. | pt_PT |
dc.identifier.citation | FERREIRA, Artur J.; FIGUEIREDO, Mário A. T. - Feature Discretization with Relevance and Mutual Information Criteria. Pattern Recognition Applications and Methods. Barcelona: SPRINGER-VERLAG BERLIN, 2015. ISBN.978-3-319-12610-4. Vol. 318, pp. 101-118 | pt_PT |
dc.identifier.doi | 10.1007/978-3-319-12610-4_7 | pt_PT |
dc.identifier.isbn | 978-3-319-12610-4 | |
dc.identifier.isbn | 978-3-319-12609-8 | |
dc.identifier.issn | 2194-5357 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/6073 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | SPRINGER-VERLAG BERLIN | pt_PT |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007%2F978-3-319-12610-4_7 | pt_PT |
dc.subject | Classification | pt_PT |
dc.subject | Feature discretization | pt_PT |
dc.subject | Linde-Buzo-Gray | pt_PT |
dc.subject | Mutual information | pt_PT |
dc.subject | Quantization | pt_PT |
dc.subject | Relevance | pt_PT |
dc.subject | Supervised learning | pt_PT |
dc.title | Feature Discretization with Relevance and Mutual Information Criteria | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Barcelona, SPAIN | pt_PT |
oaire.citation.endPage | 118 | pt_PT |
oaire.citation.startPage | 101 | pt_PT |
oaire.citation.title | 2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM) | pt_PT |
oaire.citation.volume | 318 | pt_PT |
person.familyName | Ferreira | |
person.givenName | Artur | |
person.identifier | 1049438 | |
person.identifier.ciencia-id | 091A-96FB-A88C | |
person.identifier.orcid | 0000-0002-6508-0932 | |
person.identifier.rid | AAL-4377-2020 | |
person.identifier.scopus-author-id | 35315359300 | |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 734bfe75-0c68-4cdf-8a87-2aef3564f5bd | |
relation.isAuthorOfPublication.latestForDiscovery | 734bfe75-0c68-4cdf-8a87-2aef3564f5bd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Feature Discretization with Relevance and.pdf
- Size:
- 261.15 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: