Repository logo
 
Publication

Computing RF Tree Distance over Succinct Representations

dc.contributor.authorBranco, António Pedro
dc.contributor.authorVaz, Cátia
dc.contributor.authorFrancisco, Alexandre P.
dc.date.accessioned2024-11-11T10:14:43Z
dc.date.available2024-11-11T10:14:43Z
dc.date.issued2024-01
dc.description.abstractThere are several tools available to infer phylogenetic trees, which depict the evolutionary relationships among biological entities such as viral and bacterial strains in infectious outbreaks or cancerous cells in tumor progression trees. These tools rely on several inference methods available to produce phylogenetic trees, with resulting trees not being unique. Thus, methods for comparing phylogenies that are capable of revealing where two phylogenetic trees agree or differ are required. An approach is then proposed to compute a similarity or dissimilarity measure between trees, with the Robinson–Foulds distance being one of the most used, and which can be computed in linear time and space. Nevertheless, given the large and increasing volume of phylogenetic data, phylogenetic trees are becoming very large with hundreds of thousands of leaves. In this context, space requirements become an issue both while computing tree distances and while storing trees. We propose then an efficient implementation of the Robinson–Foulds distance over tree succinct representations. Our implementation also generalizes the Robinson–Foulds distances to labelled phylogenetic trees, i.e., trees containing labels on all nodes, instead of only on leaves. Experimental results show that we are able to still achieve linear time while requiring less space. Our implementation in C++ is available as an open-source tool.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBranco AP, Vaz C, Francisco AP. Computing RF Tree Distance over Succinct Representations. Algorithms. 2024; 17(1):15. https://doi.org/10.3390/a17010015pt_PT
dc.identifier.doi10.3390/a17010015pt_PT
dc.identifier.eissn1999-4893
dc.identifier.urihttp://hdl.handle.net/10400.21/17866
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationLA/P/0078/2020 - Fundação para a Ciência e a Tecnologia (FCT)pt_PT
dc.relationInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
dc.relation.publisherversionhttps://www.mdpi.com/1999-4893/17/1/15pt_PT
dc.subjecttree dissimilaritypt_PT
dc.subjectsuccinct data structurespt_PT
dc.subjectphylogenetic treespt_PT
dc.subjectRobinson–Foulds distancept_PT
dc.titleComputing RF Tree Distance over Succinct Representationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50021%2F2020/PT
oaire.citation.endPage21pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleAlgorithmspt_PT
oaire.citation.volume17pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVaz
person.givenNameCátia
person.identifier.ciencia-id8718-741E-BBD9
person.identifier.orcid0000-0001-6074-3074
person.identifier.ridADC-1473-2022
person.identifier.scopus-author-id27267941600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication0c5cb0fd-7cd7-4a16-86a8-7a68188e53ff
relation.isAuthorOfPublication.latestForDiscovery0c5cb0fd-7cd7-4a16-86a8-7a68188e53ff
relation.isProjectOfPublication1f3e7ad3-87bb-4203-919b-53592c18fcea
relation.isProjectOfPublication.latestForDiscovery1f3e7ad3-87bb-4203-919b-53592c18fcea

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Computing_CVaz.pdf
Size:
562.75 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: