Repository logo
 
Publication

Farey neighbors and hyperbolic Lorenz knots

dc.contributor.authorGomes, Paulo
dc.contributor.authorFranco, Nuno
dc.contributor.authorSilva, Luís
dc.date.accessioned2017-09-22T09:59:09Z
dc.date.available2017-09-22T09:59:09Z
dc.date.issued2017-08
dc.description.abstractBased on symbolic dynamics of Lorenz maps, we prove that, provided one conjecture due to Morton is true, then Lorenz knots associated to orbits of points in the renormalization intervals of Lorenz maps with reducible kneading invariant of type (X, Y)*S, where the sequences X and Y are Farey neighbors verifying some conditions, are hyperbolic.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGOMES, Paulo; FRANCO, Nuno; SILVA, Luís - Farey neighbors and hyperbolic Lorenz knots. Journal of Knot Theory and its Ramifications. ISSN 0218-2165. Vol. 26, N.º 9, SI (2017), pp. 1-14.pt_PT
dc.identifier.doi10.1142/S0218216517430040pt_PT
dc.identifier.issn0218-2165
dc.identifier.issn1793-6527
dc.identifier.urihttp://hdl.handle.net/10400.21/7381
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherWorld Scientific Publishingpt_PT
dc.subjectLorenz knotspt_PT
dc.subjectHyperbolic knotspt_PT
dc.subjectSymbolic dynamicspt_PT
dc.titleFarey neighbors and hyperbolic Lorenz knotspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue9pt_PT
oaire.citation.titleJournal of Knot Theory and Its Ramificationspt_PT
oaire.citation.volume26pt_PT
person.familyNameSilva
person.givenNameLuís
person.identifier2932165
person.identifier.ciencia-id8B1E-D056-85B6
person.identifier.orcid0000-0002-2517-7932
person.identifier.scopus-author-id14050905800
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf2e0a5a1-ca99-49ad-a956-dcc4271b3e10
relation.isAuthorOfPublication.latestForDiscoveryf2e0a5a1-ca99-49ad-a956-dcc4271b3e10

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Farey_LSilva_ADM.pdf
Size:
265.3 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: