Logo do repositório
 
Publicação

Sparse mixture of experts enhanced transformer architecture for short-term hydroelectric reservoir volume prediction

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSeman, Laio Oriel
dc.contributor.authorYow, Kin-Choong
dc.contributor.authorStefenon, Stefano Frizzo
dc.date.accessioned2026-01-28T09:34:20Z
dc.date.available2026-01-28T09:34:20Z
dc.date.issued2026-06
dc.descriptionThis work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number DDG2024-00035. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de référence DDG-2024-00035. We thank the Brazilian National Council for Scientific and Technological Development (CNPq).
dc.description.abstractIn hydroelectric-based systems, effective energy generation planning relies heavily on precise forecasting of reservoir water levels. This paper proposes a novel hybrid forecasting framework that integrates multiple preprocessing strategies with a sparse Mixture of Experts enhanced Transformer architecture for short-term reservoir volume prediction. When evaluated on 19 interconnected reservoirs across two major river basins in southern Brazil using real operational data from the Brazilian National System Operator, the proposed model achieves a mean squared error of 0.062 and a mean absolute error of 0.145. Comprehensive benchmarking against 18 state-of-the-art deep learning methods demonstrates that the proposed approach significantly outperforms existing methods while maintaining computational efficiency through sparse expert routing. Our results confirm that combining diverse preprocessing strategies with conditional computation mechanisms provides superior forecasting accuracy for reservoir management in hydroelectric power systems.eng
dc.identifier.citationSeman, L. O., You, K. C., Stefenon, S. F. (2026). Sparse mixture of experts enhanced transformer architecture for short-term hydroelectric reservoir volume prediction. Electric Power Systems Research, 255, 1-13. https://doi.org/10.1016/j.epsr.2026.112754
dc.identifier.doi10.1016/j.epsr.2026.112754
dc.identifier.issn0378-7796
dc.identifier.urihttp://hdl.handle.net/10400.21/22585
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier BV
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0378779626000477?via%3Dihub
dc.relation.ispartofElectric Power Systems Research
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectElectrical power system
dc.subjectHydroelectric reservoir
dc.subjectTransformer architecture
dc.subjectMixture-of-experts
dc.titleSparse mixture of experts enhanced transformer architecture for short-term hydroelectric reservoir volume predictioneng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage13
oaire.citation.startPage1
oaire.citation.titleElectric Power Systems Research
oaire.citation.volume255
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Sparse_SFStefenon.pdf
Tamanho:
11.79 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: