Repository logo
 
Publication

Metaheuristic approach to the Holt-Winters optimal short term load forecast

dc.contributor.authorEusébio, Eduardo
dc.contributor.authorCamus, Cristina Inês
dc.contributor.authorCurvelo, Carolina
dc.date.accessioned2015-05-11T19:06:10Z
dc.date.available2015-05-11T19:06:10Z
dc.date.issued2015-03
dc.description.abstractElectricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.por
dc.identifier.citationEUSÉBIO, Eduardo Adelino Mateus Nunes; CAMUS, Cristina Inês; CURVELO, Carolina - Metaheuristic approach to the Holt-Winters optimal short term load forecast. Renewable Energy & Power Quality Journal. ISSN 2172-038X. Vol. 13 (2014)por
dc.identifier.issn2172-038X
dc.identifier.urihttp://hdl.handle.net/10400.21/4525
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherEuropean Association for the Development of Renewable Energy, Environment and Power Qualitypor
dc.relation.publisherversionhttp://www.icrepq.com/icrepq'15/460-15-eusebio.pdfpor
dc.subjectElectricity demandpor
dc.subjectLoad forecastpor
dc.subjectCombinatorial optimizationpor
dc.subjectEvolutionary algorithmspor
dc.titleMetaheuristic approach to the Holt-Winters optimal short term load forecastpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceSpainpor
oaire.citation.titleRenewable Energy & Power Quality Journalpor
oaire.citation.volume13por
person.familyNameEusébio
person.familyNameCamus
person.givenNameEduardo
person.givenNameCristina Inês
person.identifier.ciencia-id4414-1BB5-34CB
person.identifier.orcid0000-0001-5939-5420
person.identifier.orcid0000-0002-1118-6467
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication760ec7d2-85ba-4629-b79c-a47707532d3e
relation.isAuthorOfPublication47c01607-bd8a-48be-a867-08b0530bd914
relation.isAuthorOfPublication.latestForDiscovery760ec7d2-85ba-4629-b79c-a47707532d3e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Metaheuristic Approach_ADEEEA.pdf
Size:
191.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: