Loading...
Research Project
Untitled
Funder
Authors
Publications
Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network
Publication . MANAILA MAXIMEAN, DOINA; Danila, Octavian; Almeida, Pedro L.; Ganea, Constantin Paul
Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from celulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak–Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole–Cole diagram and the three-element equivalent model.
Filling in the voids of electrospun hydroxypropyl celulose network: dielectric investigations
Publication . MANAILA MAXIMEAN, DOINA; Danila, Octavian; Ganea, Constantin Paul; Almeida, Pedro L.
Here we describe an organic electro-optic device, obtained using electrospun hydroxypropyl cellulose (HPC) polymer fibres and nematic liquid crystals (LC). Its working mechanism is similar to that of a classic polymer-dispersed liquid crystal (PDLC) device. The scanning electron microscopy of the HPC deposited fibres shows a mat of fibres with diameters in the nano and micron size range. Dielectric spectroscopy measurements allow the determination of the dependence of the dielectric constant and electric energy loss on frequency and temperature as well as the determination of the activation energy. The electro-optic study shows a very good optical transmission curve, with an “on”-“off” switching voltage of less than 1V/μ m.
Reversible water driven chirality inversion in cellulose-based helices isolated from Erodium awns
Publication . Almeida, Ana; Querciagrossa, Lara; Silva, Pedro; Gonçalves, Filipa; Canejo, João; Almeida, Pedro L.; Godinho, Maria Helena; Zannoni, Claudio
Among the movements observed in some cellulosic structures produced by plants are those that involve the dispersion and burial of seeds, as for example in Erodium from the Geraniaceae plant family. Here we report on a simple and efficient strategy to isolate and tune cellulose-based hygroscopic responsive materials from Erodium awns’ dead tissues. The stimuli-responsive material isolated forms left-handed (L) or right-handed (R) helical birefringent transparent ribbons in the wet state that reversibly change to R helices when the material dries. The humidity-driven motion of dead tissues is most likely due to a composite material made of cellulose networks of fibrils imprinted by the plant at the nanoscale, which reinforces a soft wall polysaccharide matrix. The inversion of the handedness is explained using computational simulations considering filaments that contract and expand asymmetrically. The awns of Erodium are known to present hygroscopic movements, forming R helices in the dry state, but the possibility of actuating chirality via humidity suggests that these cellulose-based skeletons, which do not require complicated lithography and intricate deposition techniques, provide a diverse range of applications from intelligent textiles to micro-machines.
Bacterial cellulose: a versatile biopolymer for wound dressing applications
Publication . Portela, Raquel; R. Leal, Catarina; Almeida, Pedro L.; Sobral, Rita
Although several therapeutic approaches are available for wound and burn treatment and much progress has been made in this area, room for improvement still exists, driven by the urgent need of better strategies to accelerate wound healing and recovery, mostly for cases of severe burned patients. Bacterial cellulose (BC) is a biopolymer produced by bacteria with several advantages over vegetal cellulose, such as purity, high porosity, permeability to liquid and gases, elevated water uptake capacity and mechanical robustness. Besides its biocompatibility, BC can be modified in order to acquire antibacterial response and possible local drug delivery features. Due to its intrinsic versatility, BC is the perfect example of a biotechnological response to a clinical problem. In this review, we assess the BC main features and emphasis is given to a specific biomedical application: wound dressings. The production process and the physical-chemical properties that entitle this material to be used as wound dressing namely for burn healing are highlighted. An overview of the most common BC composites and their enhanced properties, in particular physical and biological, is provided, including the different production processes. A particular focus is given to the biochemistry and genetic manipulation of BC. A summary of the current marketed BC-based wound dressing products is presented, and finally, future perspectives for the usage of BC as wound dressing are foreseen.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/FIS-NAN/0117/2014