Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Molybdenum – and tungsten(II) monometallic 3-(2-pyridyl)pyrazole and bimetallic 3-(2-pyridyl)pyrazolate complexesPublication . Arroyo, Marta; Miguel, Daniel; Villafane, Fernando; Alegria, Elisabete; Pombeiro, ArmandoMolybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(eta(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(eta(3)-methallyl)(CO)(2)(pypzH)], [MI2(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(eta(3)-allyl)(CO)(2)(mu(2)-pypz)}](2) or [cis-{Mo(eta(3)-methallyl)(CO)(2)(mu(2)-pypz)}](2) (mu(2)-pypz = mu(2)-3-(2-pyridyl-kappa N-1) pyrazolate-2 kappa N-1). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.
- Homo-and heteropolymetallic 3-(2-pyridyl)pyrazolate manganese and rhenium complexesPublication . Arroyo, Marta; Gomez-Iglesias, Patricia; Anton, Noelia; Garcia-Rodriguez, Raul; Alegria, Elisabete; Pombeiro, Armando; Miguel, Daniel; Villafane, Fernandofac-[MBr(CO)(3)(pypzH)] (M = Mn, Re; pypzH = (3-(2-pyridyl) pyrazole) complexes are prepared from fac[ MBr(CO)(3)(NCMe)(2)] and pypzH. The result of their deprotonation depends on the metallic substrate: the rhenium complex affords cleanly the bimetallic compound [fac-{Re(CO)(3)(mu(2)-pypz)}] 2 (mu(2)-pypz = mu(2)-3-(2pyridyl-. 1N) pyrazolate-2. 1N), which was crystallographically characterized, whereas a similar manganese complex was not detected. When two equivalents of pyridylpyrazolate are used, polymetallic species [fac-M(CO) 3(mu(2)-pypz)(mu(3)-pypz) M'] (mu(3)-pypz = mu(3)-3-(2-pyridyl-kappa N-1) pyrazolate-1 kappa 2N, N: 2. 1N:; M = Mn, M' = Li, Na, K; M = Re, M' = Na) are obtained. The crystal structures of the manganese carbonylate complexes were determined. The lithium complex is a monomer containing one manganese and one lithium atom, whereas the sodium and potassium complexes are dimers and reveal an unprecedented coordination mode for the bridging 3-(2-pyridyl) pyrazolate ligand, where the nitrogen of the pyridyl fragment and the nitrogen-1 of pyrazolate are chelated to manganese atoms, and each nitrogen-2 of pyrazolate is coordinated to two alkaline atoms. The polymetallic carbonylate complexes are unstable in solution and evolve spontaneously to [fac-{Re(CO) 3(mu(2)-pypz)}](2) or to the trimetallic paramagnetic species [MnII(mu(2)-pypz) 2{fac-{MnI(CO) 3(mu(2)-pypz)}(2)}]. The related complex cis-[MnCl2(pypzH)(2)] was also synthesized and structurally characterized. The electrochemical behavior of the new homo-and heteropolymetallic 3-(2-pyridyl) pyrazolate complexes has been studied and details of their redox properties are reported.