Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Combining texture zeros with a remnant CP symmetry in the minimal type-I seesaw
    Publication . Barreiros, Debora; Gonzalez Felipe, Ricardo; Joaquim, Filipe
    In the framework of the two right-handed neutrino seesaw model, we consider maximally-restrictive texture-zero patterns for the lepton Yukawa coupling and mass matrices, together with the existence of a remnant CP symmetry. Under this premise, we find that several textures are compatible with the most recent data coming from neutrino oscillation and neutrinoless double beta decay experiments. It is shown that, the maximum number of allowed texture zeros in the Dirac Yukawa coupling matrix is two, for an inverted neutrino mass spectrum. In contrast, for Yukawa coupling matrices with just one texture zero, both normal and inverted orderings of neutrino masses are compatible with data. In all cases, the predictions for the low-energy Dirac and Majorana CP-violating phases, and for the effective mass parameter relevant in neutrinoless double-beta decay experiments, are presented and discussed. We also comment on the impact of future experimental improvements in scrutinising texture-zero patterns with a remnant CP symmetry, within the minimal version of the seesaw mechanism considered here.
  • Minimal inverse-seesaw mechanism with Abelian flavour symmetries
    Publication . Camara, Henrique B.; Gonzalez Felipe, Ricardo; Joaquim, F. R.
    We study the phenomenology of the minimal (2, 2) inverse-seesaw model supplemented with Abelian flavour symmetries. To ensure maximal predictability, we establish the most restrictive flavour patterns which can be realised by those symmetries. This setup requires adding an extra scalar doublet and two complex scalar singlets to the Standard Model, paving the way to implement spontaneous CP violation. It is shown that such CP-violating effects can be successfully communicated to the lepton sector through couplings of the scalar singlets to the new sterile fermions. The Majorana and Dirac CP phases turn out to be related, and the active-sterile neutrino mixing is determined by the active neutrino masses, mixing angles and CP phases. We investigate the constraints imposed on the model by the current experimental limits on lepton flavour-violating decays, especially those on the branching ratio BR(mu -> e gamma) and the capture rate CR(mu - e, Au). The prospects to further test the framework put forward in this work are also discussed in view of the projected sensitivities of future experimental searches sensitive to the presence of heavy sterile neutrinos. Namely, we investigate at which extent upcoming searches for mu -> e gamma, mu -> 3e and mu - e conversion in nuclei will be able to test our model, and how complementary will future high-energy collider and beam-dump experiments be in that task.
  • Scalar-singlet assisted leptogenesis with CP violation from the vacuum
    Publication . Barreiros, Debora; Câmara, Henrique B.; Gonzalez Felipe, Ricardo; Joaquim, Filipe
    In the vanilla type-I seesaw leptogenesis scenario, CP violation required to generate the lepton asymmetries in the heavy Majorana neutrino decays stem from complex Dirac-type Yukawa couplings. In this paper we explore the case in which that CP violation originates from the vacuum expectation value of a complex scalar singlet at a very high scale. This non-trivial CP-violating phase can be successfully communicated to the low-energy neutrino sector via the heavy neutrino portal. The new scalar-singlet degrees of freedom generate new contributions to the CP asymmetries relevant for leptogenesis not only at the one-loop level but also through tree-level three-body decays. These are computed here for an arbitrary number of heavy neutrinos, Higgs doublets and scalar singlets. We also take into account the new decays and scattering processes that enter the unflavoured Boltzmann equations governing the heavy-neutrino particle densities and the (B - L)-asymmetry evolution. Having established the framework of interest, we present a simple model with two RH neutrinos, two Higgs doublets and a complex scalar singlet, supplemented with a ?(8) flavour symmetry. This symmetry minimises the number of free parameters without compromising the possibility of spontaneous CP violation and compatibility with neutrino data. In fact, the only viable ?(8) charge assignment shows a preference for a non-trivial spontaneous CP-violating phase, which in turn leads to a non-vanishing CP asymmetry due to the direct link between high- and low-energy CP violation. An interesting feature of this simple setup is that the usual wave and vertex type-I seesaw contributions to the CP asymmetry vanish due to the ?(8) symmetry. Thus, the observed baryon-to-photon ratio can be explained thanks to the new couplings among the heavy neutrinos and the new scalar degrees of freedom.
  • The hidden side of scalar-triplet models with spontaneous CP violation
    Publication . Ferreira, Pedro Miguel; Gonçalves, B. L.; Joaquim, Filipe
    Scalar triplet extensions of the Standard Model provide an interesting playground for the explanation of neutrino mass suppression through the type-II seesaw mechanism. Propelled by the possible connections with leptonic CP violation, we explore under which conditions spontaneous CP violation can arise in models with extra scalar triplets. The minimal model satisfying such conditions requires adding two such triplets to the SM field content. For this model, the scalar mass spectrum in both the CP-conserving and spontaneous CP-violating scenarios is studied. In the former case, a decoupling limit for the new scalars can be achieved, while this is not the case when CP is spontaneously broken. In particular, we show that the existence of two light neutral scalars with masses below a few tenths of GeVs is unavoidable in the CP-violating case. Using matrix theory theorems, we derive upper bounds for the masses of those light scalars and briefly examine whether they can still be experimentally viable. Other interesting features of the scalar mass spectrum are discussed as, e.g., the existence of relations among the charged and neutral scalar masses.
  • Minimal type-I seesaw model with maximally restricted texture zeros
    Publication . Barreiros, Debora; Gonzalez Felipe, Ricardo; Joaquim, Filipe
    In the context of Standard Model (SM) extensions, the seesaw mechanism provides the most natural explanation for the smallness of neutrino masses. In this work we consider the most economical type-I seesaw realization in which two right-handed neutrinos are added to the SM field content. For the sake of predictability, we impose the maximum number of texture zeros in the lepton Yukawa and mass matrices. All possible patterns are analyzed in the light of the most recent neutrino oscillation data, and predictions for leptonic CP violation are presented. We conclude that, in the charged-lepton mass basis, eight different texture combinations are compatible with neutrino data at 1 sigma, all of them for an inverted-hierarchical neutrino mass spectrum. Four of these cases predict a CP-violating Dirac phase close to 3 pi/2, which is around the current best-fit value from the global analysis of neutrino oscillation data. If one further reduces the number of free parameters by considering three equal elements in the Dirac neutrino Yukawa coupling matrix, several texture combinations are still compatible with data but only at 3 sigma. For all viable textures, the baryon asymmetry of the Universe is computed in the context of thermal leptogenesis, assuming (mildly) hierarchical heavy Majorana neutrino masses M-1,M-2. It is shown that the flavored regime is ruled out, while the unflavored one requires M-1 similar to 10(14) GeV.