Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Using 3D anthropometric data for the modelling of customised head immobilisation masksPublication . Loja, Amélia; Sousa, E.; Vieira, Lina Oliveira; Craveiro, D.S.; Parafita, Rui; C. Costa, Durval; Costa, DMSHead immobilization thermoplastic masks for radiotherapy purposes involve a distressful modelling procedure for the patient. To assess the possibility of using different acquisition and reconstruction methods to obtain a 3Dskin surface model of PIXY-phantom-head and to present a proposal of an alternative head immobilisation mask prototype. Phantom head geometry acquisitions using: computed tomography (reconstructed with ImageJ and Osirix); and 3DLaserScanner (reconstructed with SolidWorks). From these reconstructed surface models a set of landmarks was measured and subsequently compared with physical measurements obtained with a Rosscraft-Calliper. For statistical evaluation, relative deviations graphics and Friedman-test for non-parametrical paired samples were used, with a significance level of 5%. For a first assessment of the proposed mask performance, a radiotransparent material was considered, the strength and stiffness evaluation being performed using the finite element method. There are small differences between all the acquisitions and reconstructions methods and the physical measurements, statistically significant differences (X2F(6)) = 6.863, p=0.334) were not found. The proposed mask performed well from the strength and stiffness perspectives, leading to the desired immobilisation aim. The immobilisation mask design proposal may be an effective alternative to the present completely hand-made situation, which presents a high-degree of discomfort and stress to the patients.
- An optimization strategy for customized radiotherapy head immobilization masksPublication . Craveiro, D.S.; Loja, Amélia; Vieira, Lina Oliveira; Vinyas, M.An effective head immobilization is an important requirement in radiotherapy treatment sessions, although it may also be thought in the future as a precious aid in brain medical imaging. Thus, the present work is focused on the stiffness optimization of a customized head immobilization mask, modelled upon the head reconstruction surface based on computerized tomography images. This paper proposes a strategy supported by a metaheuristic optimization technique and a metamodeling approach for the whole mask, illustrated at its most unfavorable region occurring in the gnathion region.