Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- A brief review of the supercritical antisolvent (SAS) technique for the preparation of nanocatalysts to be used in biodiesel productionPublication . Santos, Samuel; Puna, Jaime; Gomes, João F. P.In an era where sustainability is becoming the main driving force for research and development, supercritical fluids-based techniques are presented as a very efficient alternative technology to conventional extraction, purification, and recrystallization processes. Supercritical antisolvent (SAS) precipitation is a novel technique that can replace liquid antisolvent precipitation techniques. Additionally, through the optimization of precipitation operating conditions, morphology, particle size, and particle size distribution of nanoparticles can be controlled. As an antisolvent, supercritical carbon dioxide (scCO2) is far more sustainable than its conventional liquid counterparts; not only does it have a critical point (304 K and 73.8 bar) on its phase diagram that allows for the precipitation processes to be developed so close to room temperature, but also its recovery and, consequently, the precipitated solute purification stage is considerably simpler. This technique can be used efficiently for preparing nanocatalysts to be used in biodiesel production processes.
- Soybean oil transesterification for biodiesel production with micro-structured calcium oxide (CaO) from natural waste materials as a heterogeneous catalystPublication . Santos, Samuel; Nobre; Gomes, João; Puna, Jaime; Quinta-Ferreira, Rosa; J.C. Bordado, J. Moura Bordado, J.C.M. BordadoIn this study, micro-structured calcium oxide obtained from the calcination (850 degrees C for 3 h) of Gallus gallus domesticus (chicken) eggshells was used as a catalyst in the transesterification of soybean oil. This catalyst was characterized by Scanning Electron Spectroscopy (SEM) methods. The structure of the obtained CaO showed several agglomerates of white granular solids with a non-regular and unsymmetrical shape. In terms of calcium oxide catalytic activity, three different catalyst loadings (1%wt, 3%wt, and 5%wt) were tested for the same reaction conditions, resulting in transesterification yields of 77.27%wt, 84.53%wt, and 85.83%wt respectively. The results were compared to the current literature, and whilst they were lower, they were promising, allowing us to conclude that the tendency of yield improvement for this reaction, when the size range of catalyst particles is to be reduced to a nano scale, can be verified.
- New process for simultaneous removal of CO2, SOX and NOXPublication . Santos, Samuel; Duarte, A. P.; Bordado, João; Gomes, JoãoA method for simultaneous removal of CO2, SOX and NOX from industrial flue gases through the injection of ozone diluted in nitrogen, oxygen or nitrogen/oxygen mixtures, as an oxidizing agent and with the addition of specific sequestrants, that induce the precipitation of nitrates and sulphates, is presented. This new process is related with the conventional CO2 removal method using chemical absorption, but presents as main innovation the possibility to remove also simultaneously SOX and NOX.
- A review on bio-based catalysts (immobilized enzymes) used for biodiesel productionPublication . Santos, Samuel; Puna, Jaime; Gomes, JoãoThe continuous increase of the world's population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.
- Choosing amine-based absorbents for CO2 capturePublication . Gomes, João; Santos, Samuel; Bordado, JoãoCO2 capture from gaseous effluents is one of the great challenges faced by chemical and environmental engineers, as the increase in CO2 levels in the Earth atmosphere might be responsible for dramatic climate changes. From the existing capture technologies, the only proven and mature technology is chemical absorption using aqueous amine solutions. However, bearing in mind that this process is somewhat expensive, it is important to choose the most efficient and, at the same time, the least expensive solvents. For this purpose, a pilot test facility was assembled and includes an absorption column, as well as a stripping column, a heat exchanger between the two columns, a reboiler for the stripping column, pumping systems, surge tanks and all necessary instrumentation and control systems. Some different aquous amine solutions were tested on this facility and it was found that, from a set of six tested amines, diethanol amine is the one that turned out to be the most economical choice, as it showed a higher CO2 loading capacity (0.982 mol of CO2 per mol of amine) and the lowest price per litre (25.70 ¤/L), even when compared with monoethanolamine, the benchmark solvent, exhibiting a price per litre of 30.50 ¤/L.