Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Handling producer and consumer mobility in IoT publish-subscribe named data networksPublication . Caldeira Hernandez, Diego; Gameiro, Luís; Senna, Carlos; Luís, Miguel; Sargento, SusanaIn recent years, the Internet of Things (IoT) has become a standard facet of modern communications, and information-centric networks have been pointed as an alternative to bypass the restrictions imposed by the traditional Internet protocol networks regarding the mobility of its network elements. However, the improvements imposed by this new paradigm fall short in large scale mobile wireless distributed environments inherent to IoT, due to high node mobility, dynamic topologies and intermittent connectivity. To tackle these issues, we present a named data network (NDN)-based publish-subscribe mechanism with support for both Consumer and Producer mobility. This approach handles the Producer mobility by combining the Data packets with infrastructure specific information, fixing the broken paths between the Producer and the Consumer; and the Consumer mobility by monitoring and anticipating mobile node trajectories while compelling the infrastructure to adjust to new paths. Simulation results, assuming a smart city use case and using real traces of vehicular mobility, have shown that the proposed solution far surpasses the native NDN workflow and traditional publish-subscribe solutions. With respect to the Producer mobility, the proposed solution delivers 79% of Data packets against 14% with the Native implementation, when using 25 mobile Producers; regarding the Consumer mobility, results have shown that our solution achieves almost the same Consumer satisfaction ratio as previous implementations but reducing substantially the network overhead related with the transmission of Interest packets.
- Exploring software defined networks for seamless handovers in vehicular networksPublication . Silva, Miguel; Teixeira, Pedro; Anjos Gomes, Christian; Dias, Duarte; Luís, Miguel; Sargento, SusanaWith the growing interest in autonomous driving, constant connectivity for vehicles is becoming essential to enable the complete knowledge of the surrounding area, transmit and receive data that is crucial for the autonomous control. The vehicle mobility results in frequent service interruptions, and therefore, seamless handovers are required to mitigate this problem. Several IP-based solutions have been proposed in the literature, but they require tunneling approaches, which present excessive signaling and data overhead, service delay, and packet loss. One of these approaches, the NEMO-enabled Proxy Mobile IPv6 (N-PMIPv6) architecture, supports transparent handovers and simultaneous multi-homing, but at the cost of a high complexity and network overhead. This work explores the flexibility of Software Defined Networks (SDNs) in the management of a Vehicular Ad-hoc NETwork (VANET). In particular, the SDN concept is used to provide a seamless horizontal handover for the vehicle and its end-users. Two different SDN architectures are proposed, evaluating the impact of the depth of the softwarization environment. Real vehicular hardware and emulated mobility scenarios are used in the evaluation process where different application services are exploited. Results show that the lower complexity of the SDN solution allows for a better performance during a handover in a VANET, in terms of delays, packet losses and network overhead, making it seamless for the vehicles and its users.