Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Variable stiffness composites: optimal design studies
    Publication . Marques, Filipe Eduardo Correia; Mota, A. F.; Loja, M.A.R.
    This research work has two main objectives, being the first related to the characterization of variable stiffness composite plates’ behavior by carrying out a comprehensive set of analyses. The second objective aims at obtaining the optimal fiber paths, hence the characteristic angles associated to its definition, that yield maximum fundamental frequencies, maximum critical buckling loads, or minimum transverse deflections, both for a single ply and for a three-ply variable stiffness composite. To these purposes one considered the use of the first order shear deformation theory in connection to an adaptive single objective method. From the optimization studies performed it was possible to conclude that significant behavior improvements may be achieved by using variable stiffness composites. Hence, for simply supported three-ply laminates which were the cases where a major impact can be observed, it was possible to obtain a maximum transverse deflection decrease of 11.26%, a fundamental frequency increase of 5.61%, and a buckling load increase of 51.13% and 58.01% for the uniaxial and biaxial load respectively.
  • Mechanical behavior of a sandwich plate with aluminum foam core, using an image-based layerwise model
    Publication . Mota, A. F.; Loja, Amélia; Barbosa, J.I.; Vinyas, M.
    Functionally graded materials are an advanced type of composite materials whose properties’ spatial evolution can be designed through the definition of the spatial distribution of the constituent phases’ mixture. This feature is particularly important if specific non-homogeneous properties’ requirements are required without introducing abrupt phases’ transitions, as happens in laminated materials. Porosities’ distributions within these materials, may constitute a design requisite for some applications, such as medical implants, but can also be highly undesirable in other cases such as for aeronautical applications. Regardless the specific situation, its characterization is of high importance to the prediction of the resulting materials’ behavior. This work is focused on the static and free vibrations’ analysis of a sandwich plate with a porous aluminum foam core and outer aluminum skins. The porosities’ distribution is modeled by different fitting functions, based on data obtained from a preliminary image processing stage of X-ray CT image of the sandwich plate’ cross-section. A layerwise approach is considered for subsequent numerical simulations’ purpose, where the sandwich skins’ kinematics are modeled using the first order shear deformation theory, while the core is modeled by a higher order shear deformation theory. Fitting functions’ influence on the plate’ behavior is also assessed.