Repository logo
 
Loading...
Profile Picture
Person

Costa Pinheiro, Carla Isabel

Search Results

Now showing 1 - 3 of 3
  • Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture
    Publication . Abreu, Miguel; Teixeira, Paula; Filipe, Rui; Domingues, Luís; Pinheiro, Carla; Matos, Henrique A.
    A novel model is presented for the estimation of natural CaO-based sorbents carbonation reactivity decay during Calcium Looping carbonation-calcination cycles. The model consists of a cyclic framework of two sub-models, the Overlapping Grain Model and the novel proposed modified Rate Theory for the Pore Size Distribution model. The model was implemented in gPROMS ModelBuilder (R) and parameter estimation was used for model validation using experimental data from three CaO-based sorbent precursors. The carbonation profile for the three sorbents was simulated with average deviations under 5%. The calcination sub-model predicted the evolution of total porous volume and total surface area for the calcination and sintering of dolomite, with an error of 3%. The cyclic framework successfully predicted the carbonation behavior of dolomite for 20 carbonation-calcination cycles. The model can be used for other CaO-based sorbents and the flexible modular structure allows the integration of other modules or approaches.
  • Enhancement of sintering resistance of CaO-based sorbents using industrial waste resources for Calooping in the cement industry
    Publication . Teixeira, P.; Mohamed, Ismail; Fernandes, Auguste; Silva, João; Ribeiro, M Filipa; Pinheiro, Carla
    Keeping a high stability and CO2 capture capacity of CaO-based sorbents during the Ca-looping process is still a challenge. The main goal and the innovative idea addressed in this study consists of investigating if solid industrial waste resources such as a coal fly ash (CFA) and a spent Fluid Catalytic Cracking (SFCC) catalyst, can be used as particle spacers to improve the sintering resistance of two CaO-based sorbents. These two inert industrial waste materials are used in the present work for increasing the CaO particles separation and consequently, reducing their coalescence and hindering severe sintering at the high Ca-looping temperatures. There are currently no studies in the literature on the use of industrial SFCC wastes in blends with CaO based sorbents acting as CaO particles spacer with the objective of reducing the Ca-looping sorbents deactivation along the cycles of carbonation-calcination. Despite the mineralogical and textural differences between the CFA and SFCC catalyst industrial wastes, the tests carried out in a fixed bed laboratory reactor showed that the addition of a small fraction of waste to the CaO sorbent (ca. 10%) seems to be an interesting option to improve the CO2 capture technology efficiency. During the Ca-looping, the volume and stability of sorbent mesopores is essential to achieve higher and stable carbonation conversion values, and since the CFA and SFCC increase the SBET, they contribute to enhance the sintering resistance. The innovative results presented in this study show that the industrial CFA and SFCC wastes have potential to be an economically attractive option thus contributing to reduce the cost of the Ca-looping cycle CO2 capture process, as well as to minimize the adverse environmental impacts of the high volume of industrial wastes generated.
  • Multi-scale modelling and simulation of Ca-looping cycle process for CO2 post-combustion capture
    Publication . Pinheiro, Carla; Filipe, Rui; Torres, Miguel Abreu; Silva, João; Matos, Henrique A.
    The present work focuses on one of the more promising new post-combustion technologies using calcium-based materials, known as the “Ca-looping cycle” process, which endeavors to scrub CO2 from flue gases and syngases by using natural lime-based sorbents and which appears to potentially offer limited CO2 capture costs. So, the major driving force is to improve overall efficiency, reduce the cost, and minimize adverse environmental impacts of post-combustion Ca-looping cycle CO2 capture, as compared to more conventional technologies (e.g., amine-based solvent scrubbing). There is a large energy penalty with amine scrubbing, the closest to market technology. The main objective of this work is to develop a first principles model to simulate different natural sorbents looping cycle performance in a fixed bed reactor laboratory scale system. A rigorous non-linear dynamic model of the looping cycle process was developed in gPROMS, based on the multiscale concept. The multiscale modeling is an emerging technique, where the characteristic length for each phenomena that occurs is taken into consideration, leading to a set of submodels with different scale lengths. These submodels when coupled together allow the simulation of a macrosystem (Hangos and Cameron, 2001). After the identification of the characteristic dimensions involved in the models, the first step is the development of a single particle model, which takes into account the energy and material transport, undergoing reactions (carbonation and calcination) and structural changes inside the particle. The material and heat transport inside the particle take into account the structural changes. Detailed models of single particle undergoing cycles of calcination and carbonation are developed. An improved decay approach is introduced in the model for those sorbents exhibiting carbonation decay with the number of cycles. The experimental characterization of the samples gave vital information on the physicochemical changes occurring during testing that need to be described in the model in the carbonation decay function. The conversion decay does not only depend on the number of cycles, but also on the conditions of the previous cycles, temperature, pressure, gas phase composition and characteristics of the material used for the carbonation. Model parameters are estimated from experimental results obtained for different sorbents tested (Santos et al., 2012)(Pinheiro et al., 2016). Several simulations for different sorbents and operating conditions were performed and the model was validated with experimental data obtained in a fixed bed reactor. It was also important to ensure that the model is numerically stable within a large range of values.