Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel productionPublication . Gomes, João; Puna, Jaime; Gonçalves, Lissa M.; Bordado, JoãoThis paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 degrees C and 700 degrees C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60 -65 degrees C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production. (C) 2011 Elsevier Ltd. All rights reserved.
- Biodiesel production from waste frying oils over lime catalystsPublication . Puna, Jaime; Correia, Maria Joana Neiva; Dias, Ana Paula Soares; Gomes, João; Bordado, JoãoBiodiesel production from semi-refined oils (SRO) and waste frying oils (WFO) was studied using commercial CaO as heterogeneous catalyst. The methanolysis tests were carried out in mild reaction conditions (62 A degrees C, atmospheric pressure). With such conditions, SRO (soybean and rapeseed) allowed to produce a biodiesel containing 97-98 % of methyl esters (FAME), whereas WFO only provided 86-87 % of FAME. The lower FAME yield for WFO oil is ascribable to the partial neutralization of the catalyst by free fatty acids. Also, soaps formation from the WFO oil reduced the weight yield of the oil phase (containing FAME) obtained and increased the MONG content of the glycerin phase. The catalysts stability tests showed high stability even when WFO oil was processed. Catalytic tests performed with blends of WFO/semi-refined oils showed blending as a good strategy to process low value raw oils with minor decay of the catalyst performance. Both WFO and semi-refined oils showed S-shape kinetics curves thus discarding significant differences of the reaction mechanisms.