Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Deep structure of the Pará-Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE Brazil)
    Publication . Aslanian, Daniel; Gallais, Flora; Afilhado, Alexandra; Schnurle, Philippe; Moulin, Maryline; Evain, Mikael; Dias, Nuno; Soares, José; Fuck, Reinhart; Neto, Otaviano da Cruz Pessoa; Viana, Adriano
    The Pará-Maranhão/Barreirinhas margin, North Brazil, is a pull-apart passive margin, with two strike-slip borders, formed during the opening of the Equatorial Atlantic Ocean during Cretaceous time. Its geometry and evolution are speculative due to the lack of information on the crustal structure and the crustal nature. We present here the E-W profiles of the MAGIC (Margins of brAzil, Ghana and Ivory Coast) deep seismic experiment, a joint project between French and Brazilian universities, research institutes and the industry. Fifty-six Ocean Bottom Seismometers (OBS) and a 4.5 seismic streamer were deployed at sea along 2 of the 5 MAGIC profiles. One profile was extended onshore by installing 8 land stations. We perform forward modelling through combined interpretation of the multichannel seismic and of the main reflected and refracted of these phases recorded by the OBSs. The final P-wave velocity models reveal distinct structural domains from onshore Brazil towards the Atlantic Ocean characterized by variations of the crustal thicknesses and velocities: (1) an unthinned continental crust below the São Luís Craton, where the crust is 33 km thick, (2) a 60 km wide necking domain below the Ilha de Santana Platform; (3) offshore, east of the continental slope, a 10 km-thick deep sedimentary basin underlain by a 5 km thick crust with velocity of 6.2–6.9 km/s that we interpret as an exhumed lower continental crust, on the top of an Anomalous Velocity Layer (AVL) probably made of intrusions of mantle-derived melts into the lower continental crust, or a mixture of them; (4) eastwards, the limit of the previous domain is marked by NW-SE aligned volcanoes and the disappearance of the AVL. The sedimentary succession becomes thinner (6 km) overlaying a proto-oceanic crust characterized by seismic velocities higher than “normal” oceanic crust in its upper part, but in continuity with the velocity described in the previous domain; (5) followed by a more characteristic but thin oceanic crust. The middle/lower continental crust seems not only to have a crucial role in the genesis of the passive margin but also to be involved in the genesis of the first oceanic crust. The passage to a typical oceanic crust seems to have occurred progressively by steps: first in the deeper layer by the setup of more and more intrusions of mantle-derived melts at the base of the crust or mixture of exhumed lower crust and mantle, producing a domain of proto-oceanic crust, then by the emplacement of an upper 1-2 km-thick layer with typical oceanic characteristics.
  • Imaging early oceanic crust spreading in the Equatorial Atlantic Ocean: insights from the MAGIC wide-angle experiment
    Publication . Moulin, Maryline; Schnurle, Philippe; Afilhado, Alexandra; Gallais, Flora; Dias, Nuno; Evain, Mikael; Soares, José; Fuck, Reinhardt; Neto, Otaviano da Cruz Pessoa; Viana, Adriano; Aslanian, Daniel; Team, MAGIC
    During the MAGIC (Margins of brAzil, Ghana, and Ivory Coast) experiment, five combined wide-angle, and reflection seismic profiles were acquired in the Pará-Maranhão/Barreirinhas/Ceará basins northern Brazil. This is a pull-apart passive margin, with two strike-slip borders. The equipment deployed includes 143 sea-bottom seismometers (OBS), a 4.5-km seismic streamer, and a 7587-in3 airgun array. In this paper, we focus on the distal parts of three profiles, and one entire transverse NW-SE profile, located on the presumed Cretaceous oceanic crust. Forward modelling of these wide-angle data sets reveals an E-W lateral evolution of the oceanic crust spreading initiation with: 1) just after the so-called intermediate domain, 60 km-wide domain that consists of a 5-km-thick crystalline crust. The basement presents two layers characterized by high acoustic velocity. This domain is bounded to the NW by a NW-SE volcanic line (Volcano Alignment), and 2) a 5-km-thick oceanic crust consisting of two layers characterized by “normal velocities” spanning between the two main fracture zones that fringe the Pará-Maranhão-Barreirinhas-Ceará segment. Despite a similar thickness, these two sub-domains present different velocity distribution in their two layers. They are both overlain by 5.5 km of sedimentary deposits. Forward wide-angle modelling confirms that the seafloor spreading process was progressive, with firstly the emplacement of a proto-oceanic crust, and then a thin oceanic crust. The “proto-oceanic” crust presents a similar seismic velocity with the intermediate domain interpreted as exhumed lower continental crust except for the lower part where the intruded lower crust gives place to a very sharp Moho at the base of the proto-oceanic domain. By contrast, the thin oceanic crust domain has a lower velocity structure in its upper layer, that is interpreted as basalt and is absent in the proto-oceanic crust. This eastward evolution, as also observed in the Provençal Basin, and the Santos Basin, suggests the involvement of the lower continental crust in the first steps of seafloor spreading.