Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Detection of azo dyes using carbon dots from olive mill wastes
    Publication . Sousa, Diogo A.; Berberan-Santos, Mario; Prata, José Virgílio
    Azo dyes are widely spread in our day life, being heavily used in cosmetics, healthcare products, textile industries, and as artificial food colorants. This intense industrial activity, which inherently includes their own production, inexorably leads to uncontrolled release of dyes into the environment. As emerging pollutants, their detection, particularly in water systems, is a priority. Herein, a fluorescence-based method was employed for the sensitive and selective detection of anionic and neutral azo dyes. Carbon dots (CDs) synthesized from wet pomace (WP), an abundant semi-solid waste of olive mills, were used as probes. An outstanding capability for detection of azo dyes methyl orange (MO) and methyl red (MR) in aqueous solutions was disclosed, which reached a limit of detection (LOD) of 151 ppb for MO. The selectivity of WP-CDs for the anionic azo dye (MO) was established through competitive experiments with other dyes, either anionic (indigo carmine) or cationic (fuchsin, methylene blue, and rhodamine 6G); perchlorate salts of transition metal cations (Cu(II), Co(II), Fe(II), Fe(III), Hg(II), and Pb(II)); and sodium salts of common anions (NO3-, CO32-, Cl-, and SO42-). Evidence has been collected that supports static quenching as the main transduction event underlying the observed quenching of the probe's fluorescence, combined with a dynamic resonance energy transfer (RET) mechanism at high MO concentrations.
  • Finding value in wastewaters from the cork industry: carbon dots synthesis and fluorescence for hemeprotein detection
    Publication . Alexandre, Marta R.; Costa, Alexandra I.; Berberan-Santos, Mario; Prata, José V.
    Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry—an abundant and a_ordable, but environmentally-problematic industrial e_uent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV–Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-o_ of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that na oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the di_erences between the two types of nanomaterials highlighted.
  • Conventional vs. microwave- or mechanically-assisted synthesis of dihomooxacalix[4]arene phthalimides: NMR, X-ray and photophysical analysis
    Publication . Santos Miranda, Alexandre; Marcos, Paula M.; J.R., Ascenso; Robalo, M. Paula; Bonifácio, Vasco D. B.; Berberan-Santos, Mario; Hickey, Neal; Geremia, Silvano
    Direct O-alkylation of p-tert-butyldihomooxacalix[4]arene (1) with N-(bromopropyl)- or N-(bromoethyl)phthalimides and K2CO3 in acetonitrile was conducted under conventional heating (reflux) and using microwave irradiation and ball milling methodologies. The reactions afforded mono- and mainly distal di-substituted derivatives in the cone conformation, in a total of eight compounds. They were isolated by column chromatography, and their conformations and the substitution patterns were established by NMR spectroscopy (H-1, C-13, COSY and NOESY experiments). The X-ray structures of four dihomooxacalix[4]arene phthalimide derivatives (2a, 3a, 3b and 5a) are reported, as well as their photophysical properties. The microwave (MW)-assisted alkylations drastically reduced the reaction times (from days to less than 45 min) and produced higher yields of both 1,3-di-substituted phthalimides (3a and 6a) with higher selectivity. Ball milling did not reveal to be a good method for this kind of reaction.
  • Luminescent carbon dots from wet olive pomace: structural insights, photophysical properties and cytotoxicity
    Publication . Sousa, Diogo A.; Ferreira, L.F. Vieira; Fedorov, Alexander A.; Rego, Ana; Ferraria, Ana Maria; Cruz, Adriana; Berberan-Santos, Mario; Prata, José V.
    Carbon nanomaterials endowed with significant luminescence have been synthesized for the first time from an abundant, highly localized waste, the wet pomace (WP), a semi-solid by-product of industrial olive oil production. Synthetic efforts were undertaken to outshine the photoluminescence (PL) of carbon nanoparticles through a systematic search of the best reaction conditions to convert the waste biomass, mainly consisting in holocellulose, lignin and proteins, into carbon dots (CDs) by hydrothermal carbonization processes. Blue-emitting CDs with high fluorescence quantum yields were obtained. Using a comprehensive set of spectroscopic tools (FTIR, Raman, XPS, and 1H/13C NMR) in combination with steady-state and time-resolved fluorescence spectroscopy, a rational depiction of WP-CDs structures and their PL properties was reached. WP-CDs show the up-conversion of PL capabilities and negligible cytotoxicity against two mammalian cell lines (L929 and HeLa). Both properties are excellent indicators for their prospective application in biological imaging, biosensing, and dynamic therapies driven by light.