Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Preliminary study on the use of biodiesel obtained from waste vegetable oils for blending with hydrotreated kerosene fossil fuel using Calcium Oxide (CaO) from natural waste materials as heterogeneous catalyst
    Publication . Ozkan, Sila; Puna, Jaime; Gomes, João; Cabrita, T.; Palmeira, José; Santos, Maria Teresa
    In this experimental work, calcium from natural seafood wastes was used as a heterogeneous catalyst separately or in a blend of "shell mix" for producing biodiesel. Several chemical reaction runs were conducted at varied reaction times ranging from 30 min to 8 h, at 60 degrees C, with a mass content of 5% (W-cat./W-oil) and a methanol/oil molar ratio of 12. After the purification process, the biodiesel with fatty acid methyl ester (FAME) weight content measured was higher than 99%, which indicated that it was a pure biodiesel. This work also showed that the inorganic solid waste shell mixture used as the heterogeneous catalyst can be reused three times and the reused mixture still resulted in a FAME content higher than 99%. After 40 different transesterification reactions were performed using liquid (waste cooking oils) and solid (calcium seafood shells) wastes for producing biodiesel, under the specific conditions stated above, we found a successful, innovative, and promising way to produce biodiesel. In addition, blends prepared with jet fuel A1 and biodiesel were recorded with no invalid results after certain tests, at 25 degrees C. In this case, except for the 10% blend, the added biodiesel had no significant effect on the viscosity (fluidity) of the biojet fuel.
  • Industry energy optimization: A case study in a biodiesel production site
    Publication . Palmeira, José; Silva, João; Matos, Henrique A. S.
    This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
  • Optimization studies through simulation of a methanol/water/glycerol distillation column
    Publication . Palmeira, José; Silva, João; Matos, Henrique A.
    This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.
  • Phex: a computational tool for plate heat exchanges design problems
    Publication . Palmeira, José; Fernandes, Cristina; Matos, Henrique A.; Silva, João
    This paper presents a computational tool (PHEx) developed in Excel VBA for solving sizing and rating design problems involving Chevron type plate heat exchangers (PHE) with 1-pass-1-pass configuration. The rating methodology procedure used in the program is outlined, and a case study is presented with the purpose to show how the program can be used to develop sensitivity analysis to several dimensional parameters of PHE and to observe their effect on transferred heat and pressure drop.