Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Faster convolutional neural networks in low density FPGAs using block pruningPublication . Peres, Tiago; Gonçalves, Ana; Véstias, MárioConvolutional Neural Networks (CNNs) are achieving promising results in several computer vision applications. Running these models is computationally very intensive and needs a large amount of memory to store weights and activations. Therefore, CNN typically run on high performance platforms. However, the classification capabilities of CNNs are very useful in many applications running in embedded platforms close to data production since it avoids data communication for cloud processing and permits real-time decisions turning these systems into smart embedded systems. In this paper, we improve the inference of large CNN in low density FPGAs using pruning. We propose block pruning and apply it to LiteCNN, an architecture for CNN inference that achieves high performance in low density FPGAs. With the proposed LiteCNN optimizations, we have an architecture for CNN inference with an average performance of 275 GOPs for 8-bit data in a XC7Z020 FPGA. With our proposal, it is possible to infer an image in AlexNet in 5.1 ms in a ZYNQ7020 and in 13.2 ms in a ZYNQ7010 with only 2.4% accuracy degradation.
- Exploring data size to run convolutional neural networks in low density FPGAsPublication . Gonçalves, Ana; Peres, Tiago; Véstias, MárioConvolutional Neural Networks (CNNs) obtain very good results in several computer vision applications at the cost of high computational and memory requirements. Therefore, CNN typically run on high performance platforms. However, CNNs can be very useful in embedded systems and its execution right next to the source of data has many advantages, like avoiding the need for data communication and real-time decisions turning these systems into smart sensors. In this paper, we explore data quantization for fast CNN inference in low density FPGAs. We redesign LiteCNN, an architecture for real-time inference of large CNN in low density FPGAs, to support hybrid quantization. We study the impact of quantization over the area, performance and accuracy of LiteCNN. LiteCNN with improved quantization of activations and weights improves the best state of the art results for CNN inference in low density FPGAs. With our proposal, it is possible to infer an image in AlexNet in 7.4 ms in a ZYNQ7020 and in 14.8 ms in a ZYNQ7010 with 3% accuracy degradation. Other delay versus accuracy ratios were identified permitting the designer to choose the most appropriate.