Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Thermal nature of mantle upwellings below the ibero-western Maghreb region inferred from teleseismic tomography
    Publication . Civiero, Chiara; Custodio, Susana; Rawlinson, Nicholas; Strak, Vincent; Silveira, Graça; Arroucau, Pierre; Corela, Carlos
    Independent models of P wave and S wave velocity anomalies in the mantle derived from seismic tomography help to distinguish thermal signatures from those of partial melt, volatiles, and compositional variations. Here we use seismic data from SW Europe and NW Africa, spanning the region between the Pyrenees and the Canaries, in order to obtain a new S-SKS relative arrival-time tomographic model of the upper mantle below Iberia, Western Morocco, and the Canaries. Similar to previous P wave tomographic results, the S wave model provides evidence for (1) subvertical upper-mantle low-velocity structures below the Canaries, Atlas Ranges, and Gibraltar Arc, which are interpreted as mantle upwellings fed by a common lower-mantle source below the Canaries; and (2) two low-velocity anomalies below the eastern Rif and Betics that we interpret as the result of the interaction between quasi-toroidal mantle flow induced by the Gibraltar slab and the mantle upwelling behind it. The analysis of teleseismic P wave and S wave arrival-time residuals and the conversion of the low-velocity anomalies to temperature variations suggest that the upwellings in the upper mantle below the Canaries, Atlas Ranges, and Gibraltar Arc system may be solely thermal in nature, with temperature excesses in the range similar to 100-350 degrees C. Our results also indicate that local partial melting can be present at lithospheric depths, especially below the Atlas Ranges. The locations of thermal mantle upwellings are in good agreement with those of thinned lithosphere, moderate to high heat-flow measurements, and recent magmatic activity at the surface.
  • A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography
    Publication . Civiero, Chiara; Strak, Vincent; Custodio, Susana; Silveira, Graça; Rawlinson, Nicholas; Arroucau, Pierre; Corela, Carlos
    Upper-mantle upwellings are often invoked as the cause of Cenozoic volcanism in the Ibero-western Maghreb region. However, their nature, geometry and origin are unclear. This study takes advantage of dense seismic networks, which cover an area extending from the Pyrenees in the north to the Canaries in the south, to provide a new high-resolution P-wave velocity model of the upper-mantle and topmost lower-mantle structure. Our images show three subvertical upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc, which appear to be rooted beneath the upper-mantle transition zone (MTZ). Two other mantle upwellings beneath the eastern Rif and eastern Betics surround the Gibraltar subduction zone. We propose a new geodynamic model in which narrow upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc rise from a laterally-propagating layer of material below the MTZ, which in turn is fed by a common deep source below the Canaries. In the Gibraltar region, the deeply rooted upwelling interacts with the Gibraltar slab. Quasi-toroidal flow driven by slab rollback induces the hot mantle material to flow around the slab, creating the two low-velocity anomalies below the eastern Betics and eastern Rif. Our results suggest that the Central Atlantic plume is a likely source of hot mantle material for upper-mantle upwellings in the Ibero-western Maghreb region.
  • The role of the seismically slow Central-East Atlantic anomaly in the genesis of the Canary and Madeira volcanic provinces
    Publication . Civiero, Chiara; Custodio, Susana; Neres, Marta; Schlaphorst, David; Mata, João; Silveira, Graça
    The Canary and Madeira provinces in the Central-East Atlantic Ocean are characterized by an irregular spatio-temporal distribution of volcanism along the hotspot tracks, and several alternative scenarios have been suggested to explain it. Here, we combine results from seismic tomography, shear-wave splitting and gravity along with plate reconstruction constraints to investigate the mantle structure and dynamics beneath those provinces. We find that the Central-East Atlantic Anomaly (CEAA), which rises from the core-mantle boundary and stalls in the topmost lower mantle, is the deep source of distinct upper-mantle upwellings beneath the region. The upwellings detach intermittently from the top of the CEAA and appear to be at different evolutionary stages. We argue that the accumulation of plume material in the topmost lower mantle can play a key role in governing the first-order spatio-temporal irregularities in the distribution of hotspot volcanism.