Loading...
31 results
Search Results
Now showing 1 - 10 of 31
- Rheo-NMR study of water-based cellulose liquid crystal system at high shear ratesPublication . Echeverria, Coro; Almeida, Pedro L.; Feio, Gabriel; Figueirinhas, João; Rey, Alejandro D.; Godinho, Maria HelenaSince long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.
- On the influence of imidazolium ionic liquids on cellulose derived polymersPublication . Paiva, Tiago; Echeverria Zabala, Coro; Godinho, Maria Helena; Almeida, Pedro L.; Corvo, Marta C.The demand for better cellulose solvents has driven the search for new and improved materials to enable the processing of this polysaccharide. Ionic liquids have been debated for a long time as interesting alternatives, but the molecular details on the solubilization mechanism have been a matter of controversy. Herein, for the first time, the structure and dynamics of hydroxypropylcellulose (HPC) liquid crystal solutions were probed in the presence of imidazolium ionic liquids (ILs), conjugating rheological measurements with magnetic resonance spectroscopy. This study provides a characterization of the solutions macroscopic behaviour, where the liquid crystalline (LC) properties were maintained. Using ILs with different side chain lengths, the influence of the hydrophobic IL domain in the solvation abilities of ILs towards a cellulose derived polymer was accessed, providing experimental evidence on these interactions.
- Spotting plants' microfilament morphologies and nanostructuresPublication . Almeida, Ana; Canejo, João; Mur, Urban; Copar, Simon; Almeida, Pedro L.; Zumer, Slobodan; Godinho, Maria HelenaThe tracheary system of plant leaves is composed of a cellulose skeleton with diverse hierarchical structures. It is built of polygonally bent helical microfilaments of cellulose-based nanostructures coated by different layers, which provide them high compression resistance, elasticity, and roughness. Their function includes the transport of water and nutrients from the roots to the leaves. Unveiling details about local interactions of tracheary elements with surrounding material, which varies between plants due to adaptation to different environments, is crucial for understanding ascending fluid transport and for tracheary mechanical strength relevant to potential applications. Here we show that plant tracheary microfilaments, collected from Agapanthus africanus and Ornithogalum thyrsoides leaves, have different surface morphologies, revealed by nematic liquid crystal droplets. This results in diverse interactions among microfilaments and with the environment; the differences translate to diverse mechanical properties of entangled microfilaments and their potential applications. The presented study also introduces routes for accurate characterization of plants' microfilaments.
- First curl, then wrinklePublication . Trindade, Ana C.; Canejo, João; Teixeira, Paulo; Patricio, Pedro; Godinho, Maria HelenaThe excellent properties of elastomers are exploited to trigger wrinkling instabilities in curved shells. Micro‐ and nano‐fibres are produced by electrospinning and UV irradiated: each fibre consists of a soft core and a stiff outer half‐shell. Upon solvent de‐swelling, the fibres curl because the shell and the core have different natural lengths. Wrinkling only starts after the fibre has attained a well‐defined helical shape. A simple analytical model is proposed to find the curling curvature and wrinkle wavelength, as well as the transition between the “curling” and “wrinkling” regimes. This new instability resembles that found in the tendrils of climbing plants as they dry and lignify.
- Wrinkling Labyrinth Patterns on Elastomeric Janus ParticlesPublication . Trindade, A. C.; Canejo, João; Pinto, L. F. V.; Patricio, Pedro; Brogueira, Pedro; Teixeira, Paulo; Godinho, Maria HelenaWe describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks.
- Hierarchical wrinkling on elastometric Janus spheresPublication . Trindade, Ana C.; Canejo, João; Patricio, Pedro; Brogueira, Pedro; Teixeira, Paulo; Godinho, Maria HelenaHierarchical wrinkling on elastomeric Janus spheres is permanently imprinted by swelling, for different lengths of time, followed by drying the particles in an appropriate solvent. First-order buckling with a spatial periodicity (lambda(11)) of the order of a few microns and hierarchical structures comprising of 2nd order buckling with a spatial periodicity (lambda(12)) of the order of hundreds of nanometers have been obtained. The 2nd order buckling features result from a Grinfeld surface instability due to the diffusion of the solvent and the presence of sol molecules.
- Cellulose-based biomimetics and their applicationsPublication . Almeida, Ana; Canejo, João; Fernandes, Susete; Echeverria Zabala, Coro; Almeida, Pedro L.; Godinho, Maria HelenaNature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined.
- From cellulosic based liquid crystalline sheared solutions to 1D and 2D soft materialsPublication . Godinho, Maria Helena; Almeida, Pedro L.; Figueirinhas, JoãoLiquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
- Liquid crystal beads constrained on thin cellulosic fibers: Electric field induced microrotors and N-I transitionPublication . Geng, Yong; Almeida, Pedro L.; Figueirinhas, João; Terentjev, Eugene; Godinho, Maria HelenaWe directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.
- A cellulose liquid crystal motor: a steam engine of the second kindPublication . Geng, Yong; Almeida, Pedro L.; Fernandes, Susete Nogueira; Cheng, Cheng; Palffy-Muhoray, Peter; Godinho, Maria HelenaThe salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.