Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Assessment of wireless charging impacts based on real-world driving patterns: Case study in Lisbon, Portugal
    Publication . Duarte, Gonçalo; Silva, André; Baptista, Patrícia
    In the current transition to a smarter and more efficient transportation system, battery electric vehicle mileage and the time required for charging are still two main constraints that need to be overcome to enable a larger penetration of electric vehicles. Moreover, the few charging stations available are a consequence of the "supply and demand" problem. Consequently, wireless dynamic recharging can be a complementary solution to address the problems of light-duty electric mobility and an added-value towards autonomous vehicles. Consequently, this paper presents an innovative approach based on real world mobility patterns collected for a sample in the city of Lisbon, Portugal, to assess users' electric vehicle feasibility by assessing different recharging scenarios, comparing stationary and dynamic recharging scenarios. The results indicate that at least 15 % more drivers would be eligible to own an electric vehicle if wireless charging was available. Moreover, wireless charging reduces the range of battery used, with stationary charging requiring circa 3.2 times more battery range. The developed approach confirms that wireless dynamic recharging can significantly change the framework of current electric mobility limitations, reducing range anxiety issues, contributing to redesign electric vehicle battery capacity and overcome barriers in stationary charging deployment and availability.
  • Assessing electric mobility feasibility based on naturalistic driving data
    Publication . Faria, Marta; Duarte, Gonçalo; Baptista, Patricia
    In a context where electric mobility is gaining increasing importance as a more sustainable solution for urban environments, this work presents an analysis of electric mobility feasibility and adequacy based on private users' naturalistic driving data. Several scenarios were tested to evaluate different charging event opportunities and their impacts on electric mobility feasibility. In more detail, scenario 1 considered that vehicles would recharge whenever they are stopped for 2, 4 or 6 h, either on weekdays or weekend days; scenario 2 tested the hypothesis of recharging only during the night period; and scenario 3 assumed that vehicles would recharge during the day on weekdays. Furthermore, the potential energy impacts of electric mobility at a city level, by applying a driver and street level approach, were also estimated. Results revealed that electric mobility is highly feasible for weekday urban trips, while weekend trips due to their higher average distance are less suitable to be performed by EVs. Scenario 1, due to its higher recharging opportunities was found to be the best-case scenario. In this case, the percentage of eligible trips was found to be equal to or higher than 94% and 88% on weekdays and weekend days, respectively. Results showed also the lower electric mobility feasibility if considering only daytime charging, on weekdays (scenario 3). However, if considering night charging (scenario 2), the electric mobility eligibility was found to improve significantly. When considering a street level analysis, the potential reduction in energy consumption ranges in average from −60 to −70%, enabling the visualization of higher EV potential, with increasing potential for reducing energy consumption for increasing road grades. Concluding, since electric mobility is particularly suited for urban driving and most households detain 2 or more vehicles, there is a high potential to replace at least one ICEV by an EV. In this case, people may adapt their driving behavior, using the EV for their day-to-day urban driving while the ICEV would be used for longer trips. Nonetheless, the capacity to recharge during night plays a significant role on trips eligibility. Therefore, the availability of home-charge set-ups or a much higher deployment of public charging stations at residential locations are required in order to incentivize drivers to shift towards electric mobility.
  • Assessment of wireless charging impacts based on real-world driving patterns: case study in Lisbon, Portugal
    Publication . Duarte, Gonçalo; Silva, André; Baptista, Patrícia
    In the current transition to a smarter and more efficient transportation system, battery electric vehicle mileage and the time required for charging are still two main constraints that need to be overcome to enable a larger penetration of electric vehicles. Moreover, the few charging stations available are a consequence of the "supply and demand" problem. Consequently, wireless dynamic recharging can be a complementary solution to address the problems of light-duty electric mobility and an added-value towards autonomous vehicles. Consequently, this paper presents an innovative approach based on real world mobility patterns collected for a sample in the city of Lisbon, Portugal, to assess users' electric vehicle feasibility by assessing different recharging scenarios, comparing stationary and dynamic recharging scenarios. The results indicate that at least 15 % more drivers would be eligible to own an electric vehicle if wireless charging was available. Moreover, wireless charging reduces the range of battery used, with stationary charging requiring circa 3.2 times more battery range. The developed approach confirms that wireless dynamic recharging can significantly change the framework of current electric mobility limitations, reducing range anxiety issues, contributing to redesign electric vehicle battery capacity and overcome barriers in stationary charging deployment and availability.