Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- An active seismic zone in intraplate West Iberia inferred from high-resolution geophysical dataPublication . Custodio, Susana; Batlló, Josep; Zahradnik, Jiri; Arroucau, Pierre; Silveira, Graça; Heimann, Sebastian; Matos, CatarinaIntraplate Iberia is a region of slow lithopsheric deformation (<1mm/yr) with significant historical earthquake activity. Recent high-quality instrumental data have shown that small-magnitude earthquakes collapse along clusters and lineaments, which however do not bear a clear relationship to geologically mapped active structures. In this article, we investigate the controls of these earthquake clusters. In particular, we study two of the identified clustersthe Arraiolos and the Evora seismic zones (ASZ and ESZ), located in the Western Ossa Morena Zone, southwest Iberia. The ASZ marks a sharp boundary between a seismically active region to its south and a more quiet region to its north. We revise historical earthquakes in order to clarify whether earthquake activity in the region is persistent. We use data from a local network to compute accurate epicenters, focal depth, focal mechanisms, and spatiotemporal clustering, thus characterizing ongoing small-scale fracturing. Finally, we analyze complementary data sets, including tomographic models, Global Navigation Satellite Systems data, magnetic anomalies, and gravity anomalies, in order to discuss the factors that control seismogenesis in the two seismic zones. Consistency between earthquake locations, focal mechanisms and Global Navigation Satellite Systems data suggests that the ASZ is an active right-lateral shear zone, which divides two blocks within the Western Ossa Morena Zone. The ESZ seems to localize microseismicity due to its granitic lithology. These results suggest that high-resolution geophysical data have the potential to reveal blocks with different seismogenic and rheological behaviors, which may be used to improve our understanding of fault systems and the assessment of earthquake hazard in slowly deforming regions. Plain Language Summary Mainland Portugal is a region of slow lithospheric deformation. This means that changes in Earth's outmost layerthe lithosphereoccur at very low rates (<1mm/yr). In such environments, faults producing earthquakes are not easy to identify at the Earth's surface, both because their evidence can be gradually erased by wind and water or simply because they do not reach the surface. Recent studies have shown that small earthquakes in mainland Portugal group together delineating seismically more active regions. In this article we focus in two particular groups of earthquakesthe Arraiolos and the Evora seismic zones (ASZ and ESZ) and we investigate why they occur in these particular locations. We obtain precise maps of earthquake epicenters. When possible, we also analyze the direction of slip during the earthquake and the orientation of the fracture on which it occurred. We compare our results with other data sets, such as images of the Earth's interior, that could give hints about the constitution of crust beneath the ASZ and the ESZ. Earthquakes epicenters show fault sections at depth in the ASZ. These faults separate two crustal blocks with distinct material properties. In the ESZ earthquakes are associated to contrasts in crustal materials.
- Thermal nature of mantle upwellings below the ibero-western Maghreb region inferred from teleseismic tomographyPublication . Civiero, Chiara; Custodio, Susana; Rawlinson, Nicholas; Strak, Vincent; Silveira, Graça; Arroucau, Pierre; Corela, CarlosIndependent models of P wave and S wave velocity anomalies in the mantle derived from seismic tomography help to distinguish thermal signatures from those of partial melt, volatiles, and compositional variations. Here we use seismic data from SW Europe and NW Africa, spanning the region between the Pyrenees and the Canaries, in order to obtain a new S-SKS relative arrival-time tomographic model of the upper mantle below Iberia, Western Morocco, and the Canaries. Similar to previous P wave tomographic results, the S wave model provides evidence for (1) subvertical upper-mantle low-velocity structures below the Canaries, Atlas Ranges, and Gibraltar Arc, which are interpreted as mantle upwellings fed by a common lower-mantle source below the Canaries; and (2) two low-velocity anomalies below the eastern Rif and Betics that we interpret as the result of the interaction between quasi-toroidal mantle flow induced by the Gibraltar slab and the mantle upwelling behind it. The analysis of teleseismic P wave and S wave arrival-time residuals and the conversion of the low-velocity anomalies to temperature variations suggest that the upwellings in the upper mantle below the Canaries, Atlas Ranges, and Gibraltar Arc system may be solely thermal in nature, with temperature excesses in the range similar to 100-350 degrees C. Our results also indicate that local partial melting can be present at lithospheric depths, especially below the Atlas Ranges. The locations of thermal mantle upwellings are in good agreement with those of thinned lithosphere, moderate to high heat-flow measurements, and recent magmatic activity at the surface.
- A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomographyPublication . Civiero, Chiara; Strak, Vincent; Custodio, Susana; Silveira, Graça; Rawlinson, Nicholas; Arroucau, Pierre; Corela, CarlosUpper-mantle upwellings are often invoked as the cause of Cenozoic volcanism in the Ibero-western Maghreb region. However, their nature, geometry and origin are unclear. This study takes advantage of dense seismic networks, which cover an area extending from the Pyrenees in the north to the Canaries in the south, to provide a new high-resolution P-wave velocity model of the upper-mantle and topmost lower-mantle structure. Our images show three subvertical upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc, which appear to be rooted beneath the upper-mantle transition zone (MTZ). Two other mantle upwellings beneath the eastern Rif and eastern Betics surround the Gibraltar subduction zone. We propose a new geodynamic model in which narrow upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc rise from a laterally-propagating layer of material below the MTZ, which in turn is fed by a common deep source below the Canaries. In the Gibraltar region, the deeply rooted upwelling interacts with the Gibraltar slab. Quasi-toroidal flow driven by slab rollback induces the hot mantle material to flow around the slab, creating the two low-velocity anomalies below the eastern Betics and eastern Rif. Our results suggest that the Central Atlantic plume is a likely source of hot mantle material for upper-mantle upwellings in the Ibero-western Maghreb region.
- Evidence for high temperature in the upper mantle beneath Cape Verde archipelago from Rayleigh-wave phase-velocity measurementsPublication . Carvalho, Joana; Bonadio, Raffaele; Silveira, Graça; Lebedev, Sergei; Mata, João; Arroucau, Pierre; Meier, Thomas; Celli, Nicolas L.Cape Verde is an intraplate archipelago located in the Atlantic Ocean about 560 km west of Senegal, on an similar to 130 Ma old oceanic lithosphere. The upper-mantle structure beneath the islands was poorly known, until recently, in large part due to the lack of broadband seismic stations. In this study we used data from two temporary deployments across the archipelago, measuring the phase velocities of Rayleigh-waves fundamental-modes in a broad period range (8-250 s), by cross-correlating teleseismic earthquake data between pairs of stations. We derived a robust average, phase-velocity curve for the Cape Verde region, and inverted it for a shear-wave velocity profile. Our results show significantly low velocities of similar to 4.2 km/s in the asthenosphere, indicating the presence of anomalously high temperatures and, eventually, partial melting. The temperature anomaly is probably responsible for the thermal rejuvenation of the lithosphere to an effective age as young as about 30 Ma, which we infer from the comparison of seismic velocities beneath Cape Verde archipelago and those representative of different ages in the Central Atlantic. The anomalously high temperature in the asthenosphere, together with previously published evidence on low seismic velocities in the lower mantle and relatively He-unradiogenic isotopic ratios, suggests a hot plume, rooted deep in the lower mantle, as the origin of the Cape Verde hotspot.