Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Nanofiltration of surface water for the removal of endocrine disruptors
    Publication . Salvaterra, Ana Filipa; Sarmento, Georgina; Minhalma, Miguel; de Pinho, Maria Norberta
    The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.
  • Nanofiltration for the treatment of coke plant ammoniacal wastewaters
    Publication . Korzenowski, Christa; Minhalma, Miguel; Bernardes, Andrea M.; Zoppas Ferreira, Jane; de Pinho, Maria Norberta
    This work addresses the treatment by nanofiltration (NF) of solutions containing NaCN and NH(4)Cl at various pH values. The NF experiments are carried out in a Lab-Unit equipped with NF-270 membranes for model solutions that are surrogates of industrial ammoniacal wastewaters generated in the coke-making processes. The applied pressure is 30 bar. The main objective is the separation of the compounds NaCN and NH(4)Cl and the optimization of this separation as a function of the pH. Membrane performance is highly dependent on solution composition and characteristics, namely on the pH. In fact, the rejection coefficients for the binary model solution containing sodium cyanide are always higher than the rejections coefficients for the ammonium chloride model solution. For ternary solutions (cyanide/ammonium/water) it was observed that for pH values lower than 9 the rejection coefficients to ammonium are well above the ones observed for the cyanides, but for pH values higher than 9.5 there is a drastic decrease in the ammonium rejection coefficients with the increase of the pH. These results take into account the changes that occur in solution, namely, the solute species that are predominant, with the increase of the pH. The fluxes of the model solutions decreased with increased pH. (C) 2010 Elsevier B.V. All rights reserved.