Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Fatigue life of a railway wheel under uniaxial and multiaxial loadingsPublication . Soares, Henrique; Anes, Vitor; de Freitas, M.; Reis, LuisIn this paper, a railway wheel material is under evaluation using multiaxial fatigue testing. The experiments were conducted using a servo-hydraulic machine with standardized specimens. All samples were machined from a single worn-out railway wheel. The damage scale between normal and shear stresses was evaluated in the normal stress space for proportional and non-promotional loadings. Moreover, the uniaxial SN curves were obtained. A critical plane analysis was performed using theoretical criteria and experimental results. Results show a strong influence of heat treatments on the material fatigue behavior.
- Evaluation and numerical modeling of phenomenological approach for AZ31B-F magnesium alloy under multiaxial fatiguePublication . Moreira, R.; Anes, Vitor; Freitas, M. De; Reis, L.Magnesium alloys have been attractive to use in structural components due to their high strength to weight ratio, low density and high damping capacity. However, magnesium alloys show peculiar plastic deformation mechanisms under cyclic loads (twinning and de-twinning) that causes the asymmetric material behaviour and limits their use in structural components. Recent researches indicate that this type of plastic deformation mechanism cannot be fully characterized using the typical tools used in steels. Therefore, the phenomenological Hypo-strain (HYPS) model has been developed to capture the asymmetric behaviour of magnesium alloys under uniaxial and multiaxial loadings. This study aims to evaluate the phenomenological Hypo-strain approach for AZ31B-F magnesium alloy and to implement the HYPS model on an external subroutine (UMAT) to run on Abaqus. The goal is to reach a numerical tool that can be used to accurately describe the cyclic elastic-plastic behaviour of magnesium alloys in synergy with finite element packages. In order to characterize the cyclic behaviour of AZ31B-F magnesium alloy, experimental tests were performed considering proportional and non-proportional loadings. To evaluate the implemented model in UMAT, these results were correlated with the experiments and with the analytical HYPS approach. Moreover, the estimates were also correlated with the Armstrong-Frederick model available on Abaqus/Standard 6.14 library. The results have shown that the HYPS model was successful implemented on the UMAT subroutine with a good correlation between experimental tests and the HYPS model. Some remarks between the HYPS and Armstrong-Frederick models are drawn.
- Effect of shear/axial stress ratio on multiaxial non-proportional loading fatigue damage on AISI 303 steelPublication . Anes, Vitor; Reis, Luis; de Freitas, M.In this paper, we investigate the cyclic response of AISI 303 stainless steel subjected to non-proportional loads with different amplitude ratios between shear stresses and normal stresses. Based on the experiments, a relationship between the proportional reference load and a varied range of non-proportional loads was established. To achieve this objective, an experimental program was implemented to evaluate the non-proportional parameter Y. Then, the evolution of this parameter was analyzed with the number of cycles to failure and with the ratio between shear and normal stresses, finally, the evolution of the non-proportional parameter Y was mapped by two functions. The results show that the non-proportional response of the AISI 303 can be estimated using the two functions obtained. This allows the estimation of the relationship between non-proportional and proportional stresses as a function of the number of cycles to failure together with the relationship between shear and normal stresses. The results obtained have direct application in the evaluation of accumulated damage, assessed in real-time, resulting from variable amplitude loading spectra. This is of particular interest for the evaluation of structural health monitoring of structures and mechanical components.