Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Electrodeposited MoOx films as negative electrode materials for redox supercapacitorsPublication . Upadhyay, Kush; Nguyen, Tuyen; Moura E Silva, Teresa; Carmezim, Maria; MONTEMOR, FATIMAMoOx films composed of agglomerated nanoparticles were synthesized by potentiostatic electrodeposi-tion on stainless steel collectors for charge storage electrodes working in aqueous electrolyte (1 M H2SO4) and negative potential window. The agglomerated nanoparticles were amorphous in nature and possess mixed valance state. By optimizing the charge density applied during electrodeposition, the electrodes delivered maximum specific capacity of 228 C g_1 (507 F g_1) at 1 A g_1 for the sample electrodeposited at _0.3 C cm_2. This film showed very good rate capability and retained around 48% of specific capacity at 10 A g_1. The galvanostatic charge discharge cycling stability test showed 87% of initial capacity retained after 900 cycles, suggesting good stability behaviour. Electrochemical impedance spectroscopy (EIS) measurements evidenced lower equivalent series resistance for the sample electrodeposited at _0.3 C cm_2 among the tested samples, revealing its better electrochemical performance. Aging of the electrode with higher specific capacity was also investigated by performing EIS after different cycles; the results revealed an increment on the overall resistance, thus clarifying the capacity degradation.
- One-step process to form a nickel-based/carbon nanofoam composite supercapacitor electrode using Na2SO4 as an eco-friendly electrolytePublication . Della Noce, Rodrigo; Eugénio, Sónia; Boudard, M.; Rapenne, Laetitia; Moura E Silva, Teresa; Carmezim, Maria; Donne, S. W.; MONTEMOR, FATIMAIn this work, NiOx is anodically electrodeposited onto carbon nanofoam (CNF) to form a composite electrode devoted to supercapacitor applications. The use of NiSO4 as precursor in electrodeposition results in the formation of NiO and NiOOH species, as confirmed by XPS analysis, by means of a one-step anodic process. The presence of both NiO and NiOOH suggests the existence of pseudocapacitance, as observed in MnO2 and RuO2 materials. By employing Na2SO4, an eco-friendly electrolyte, the resulting composite delivers a specific capacitance of 150 F g(-1) at 1 A g(-1) considering the total mass of the electrode (deposit plus substrate). In addition, this composite electrode can operate in a very broad potential window, as high as 2.2 V, suggesting its application in high energy density electrochemical supercapacitors.
- Direct electrodeposition of hydrogenated reduced graphene oxide from unsonicated solution and its electrochemical responsePublication . Noce, R.D.; Eugenio, S.; Siwek, K. I.; Moura E Silva, Teresa; Carmezim, Maria; Sakita, A. M. P.; Lavall, R.L.; Montemor, M.F.Reduced graphene oxide (rGO) is successfully electrodeposited from a graphene oxide-containing suspension under stirring and no sonication onto Ni foam by applying -1.5 V/SCE. The electrodeposited material is characterized by X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier Transform Infra-Red spectroscopy (FTIR) and Thermogravimetric analysis (TGA). FTIR and TGA results indicate the formation of hydrogenated rGO after electrodeposition. In addition, the electrochemical response of the rGO/Ni electrode is evaluated by cyclic voltammetry in 1 M potassium hydroxide solution. The results reveal that the electrode possesses higher conductivity and lower polarization loss compared to bare Ni foam, opening wider perspectives to design composites with improved electrochemical performance.