Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Engine cold start analysis using naturalistic driving data: City level impacts on local pollutants emissions and energy consumptionPublication . Faria, Marta; Varella, Roberto A.; Duarte, Gonçalo; Farias, Tiago L.; Baptista, PatriciaThe analysis of vehicle cold start emissions has become an issue of utmost importance since the cold phase occurs mainly in urban context, where most of the population lives. In this sense, this research work analyzes and quantifies the impacts of cold start in urban context using naturalistic driving data. Furthermore, an assessment of the influence of ambient temperature on the percentage of time spent on cold start was also performed. Regarding the impacts of ambient temperature on cold start duration, a higher percentage of time spent on cold start was found for lower ambient temperatures (80% of the time for 0 °C and ~50% for 29 °C). Results showed that, during cold start, energy consumption is >110% higher than during hot conditions while emissions are up to 910% higher. Moreover, a higher increase on both energy consumption and emissions was found for gasoline vehicles than for diesel vehicles. When assessing the impacts on a city perspective, results revealed that the impacts of cold start increase for more local streets. The main finding of this study is to provide evidence that a higher increase on emissions occurs on more local streets, where most of the population lives. This kind of knowledge is of particular relevance to urban planners in order to perform an informed definition of public policies and regulations to be implemented in the future, to achieve a cleaner and healthier urban environment.
- Driving for decarbonization: Assessing the energy, environmental, and economic benefits of less aggressive driving in Lisbon, PortugalPublication . Faria, Marta; Duarte, Gonçalo; Varella, Roberto A.; Farias, Tiago; Baptista, PatriciaThis work assesses the impacts of aggressive driving behavior on pollutants emissions and energy consumption at a city level. Furthermore, it performs an economic analysis considering the potential avoided emissions and fuel savings and discusses potential policy measures to address this topic. The results showed that aggressive driving significantly impacts energy consumption and emissions, with energy consumption increasing by more than similar to 200% and emissions by 330% for aggressive driving compared to non-aggressive driving (in MJ/km and in g/ km, respectively). This increment was found to be even higher for diesel vehicles than for gasoline vehicles. On the contrary, gasoline vehicles showed higher percentages of increase for most emissions (CO, NOx and NO). Results also revealed that aggressive driving impacts are higher for local streets when examining the city level. Moreover, the economic analysis showed that significant cost reductions may be achieved by avoiding aggressive driving, reaching up to 52.5 k(sic) on a daily basis. In conclusion, this study is of particular relevance to policy makers and urban planners, enabling to obtain a comprehensive overview of the impacts of aggressive driving behaviors at a city level and providing new insights to perform further developments and to assess the feasibility of the implementation of policy measures.