Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Spotting plants' microfilament morphologies and nanostructures
    Publication . Almeida, Ana; Canejo, João; Mur, Urban; Copar, Simon; Almeida, Pedro L.; Zumer, Slobodan; Godinho, Maria Helena
    The tracheary system of plant leaves is composed of a cellulose skeleton with diverse hierarchical structures. It is built of polygonally bent helical microfilaments of cellulose-based nanostructures coated by different layers, which provide them high compression resistance, elasticity, and roughness. Their function includes the transport of water and nutrients from the roots to the leaves. Unveiling details about local interactions of tracheary elements with surrounding material, which varies between plants due to adaptation to different environments, is crucial for understanding ascending fluid transport and for tracheary mechanical strength relevant to potential applications. Here we show that plant tracheary microfilaments, collected from Agapanthus africanus and Ornithogalum thyrsoides leaves, have different surface morphologies, revealed by nematic liquid crystal droplets. This results in diverse interactions among microfilaments and with the environment; the differences translate to diverse mechanical properties of entangled microfilaments and their potential applications. The presented study also introduces routes for accurate characterization of plants' microfilaments.
  • Cellulose-based biomimetics and their applications
    Publication . Almeida, Ana; Canejo, João; Fernandes, Susete; Echeverria Zabala, Coro; Almeida, Pedro L.; Godinho, Maria Helena
    Nature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined.
  • Reversible water driven chirality inversion in cellulose-based helices isolated from Erodium awns
    Publication . Almeida, Ana; Querciagrossa, Lara; Silva, Pedro; Gonçalves, Filipa; Canejo, João; Almeida, Pedro L.; Godinho, Maria Helena; Zannoni, Claudio
    Among the movements observed in some cellulosic structures produced by plants are those that involve the dispersion and burial of seeds, as for example in Erodium from the Geraniaceae plant family. Here we report on a simple and efficient strategy to isolate and tune cellulose-based hygroscopic responsive materials from Erodium awns’ dead tissues. The stimuli-responsive material isolated forms left-handed (L) or right-handed (R) helical birefringent transparent ribbons in the wet state that reversibly change to R helices when the material dries. The humidity-driven motion of dead tissues is most likely due to a composite material made of cellulose networks of fibrils imprinted by the plant at the nanoscale, which reinforces a soft wall polysaccharide matrix. The inversion of the handedness is explained using computational simulations considering filaments that contract and expand asymmetrically. The awns of Erodium are known to present hygroscopic movements, forming R helices in the dry state, but the possibility of actuating chirality via humidity suggests that these cellulose-based skeletons, which do not require complicated lithography and intricate deposition techniques, provide a diverse range of applications from intelligent textiles to micro-machines.
  • Crosslinked bacterial cellulose hydrogels for biomedical applications
    Publication . Almeida, Ana; Saraiva, João N.; Cavaco, Gonçalo; Portela, Raquel; Leal, Catarina R.; Sobral, Rita; Almeida, Pedro L.
    The skin, fundamental barrier that protects internal tissues, prevents pathogen invasion, and maintains the body fluid equilibrium, may be compromised upon traumas, such as incisions and burns. The healing process of such wounds is costly and usually hindered by the patient’s physiological conditions, associated diseases, inflammation and external factors, namely bacterial infections. Recently, increasing attention has been given to bacterial cellulose-based membranes to be applied as dressings for healing purposes. Bacterial cellulose is an attractive biomaterial due to its unique structural characteristics such as high porosity, high water retention capacity, high mechanical strength, low density, and biodegradability. One drawback of bacterial cellulose hydrogels is that, after the first dehydration, the water retention capacity is hindered. In this work we produced, modified, and characterized hydrated and de-hydrated BC membranes. Two crosslinking methods were adopted (using citric acid and epichlorohydrin as crosslinking agents), and the results obtained from the characterizations such as water retention capacity, mechanical properties or contact angle were compared to those of unmodified bacterial cellulose. We demonstrate that the cross-linked bacterial cellulose membranes present physical properties suitable to be used as surgical and burn wound dressings when hydrated, or as exuding wound dressings, diapers dressing or sanitary pads when dehydrated.
  • Cholesteric-type cellulosic structures: from plants to applications
    Publication . Almeida, Ana; Canejo, João; Almeida, Pedro L.; Godinho, Maria Helena
    The structural support of plant cells is provided by the cell wall, which major load-bearing component is an array of hierarchical orientedhierarchical-oriented cellulose nano-, micro- and meso-structures of cellulose microfibrils. Cellulosic structures can respond to humidity changes by expanding or shrinking and this allows, for example, the dispersion of seeds. Previous studies have shown that nanorods, extracted from cell walls, can generate lyotropic liquid crystals that are at the origin of solid cholesteric-like arrangements. Not only photonic films, but also right and left helical filaments, anisotropic films with the ability to bend back and forth under the action of a moisture gradient at room temperature, are some of the materials that were produced from cellulose liquid crystal systems. This work is a review that focus on liquid crystalline-based structures obtained from cellulosic materials and how small perturbations on their structures affect significantly the response to external stimulus and interactions with the environment. Special emphasis is given to cholesteric-like organization of cellulose structures existing in plants, which are an inspiration for the production of the next generation of soft interactive materials.