Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Cellulose-based biomimetics and their applicationsPublication . Almeida, Ana; Canejo, João; Fernandes, Susete; Echeverria Zabala, Coro; Almeida, Pedro L.; Godinho, Maria HelenaNature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined.
- Cholesteric-type cellulosic structures: from plants to applicationsPublication . Almeida, Ana; Canejo, João; Almeida, Pedro L.; Godinho, Maria HelenaThe structural support of plant cells is provided by the cell wall, which major load-bearing component is an array of hierarchical orientedhierarchical-oriented cellulose nano-, micro- and meso-structures of cellulose microfibrils. Cellulosic structures can respond to humidity changes by expanding or shrinking and this allows, for example, the dispersion of seeds. Previous studies have shown that nanorods, extracted from cell walls, can generate lyotropic liquid crystals that are at the origin of solid cholesteric-like arrangements. Not only photonic films, but also right and left helical filaments, anisotropic films with the ability to bend back and forth under the action of a moisture gradient at room temperature, are some of the materials that were produced from cellulose liquid crystal systems. This work is a review that focus on liquid crystalline-based structures obtained from cellulosic materials and how small perturbations on their structures affect significantly the response to external stimulus and interactions with the environment. Special emphasis is given to cholesteric-like organization of cellulose structures existing in plants, which are an inspiration for the production of the next generation of soft interactive materials.