Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A self-clinching fastener for hidden lap jointsPublication . Sampaio, Rui F. V.; Pragana, João; Bragança, Ivo M. F; Silva, Carlos M. A.; Martins, P. A. F.This paper presents a new self-clinching fastener to connect two sheets (or plates), made from similar or dissimilar materials, placed over one another by means of a mechanical form-closed joint that is hidden inside the sheets. The development of the fastener, the definition of its main design variables and the identification of its workability limits are carried out by means of a combined experimental and numerical simulation work based on finite elements. It is shown that self-clinching by pressing the two overlapped sheets against each other to displace material around the annular groove of the fastener shank and create undercuts in both sheets requires an appropriate choice of the design variables. Wrong values of the design variables resulting in lack or excess of material displaced by plastic flow gives rise to inappropriate lap joints that cannot be used in production. The new proposed fastener allows, for the first time ever, joining by forming with the use of auxiliary elements that are harder than the sheet materials to fabricate invisible joints with no material protrusions in applications requiring minimum installation space
- Injection lap riveting of aluminum busbars — a thermo-electro-mechanical investigationPublication . Pragana, J.P.M; Sampaio, Rui F. V.; Bragança, Ivo; Martins, P. A. F.This paper presents a new mechanical joining process to assemble aluminum busbars in energy distribution systems. The process is based on the extension of injection lap riveting to the connection of busbars made from the same material as the rivets and requires redesigning the joints to ensure complete filling with good mechanical interlocking and appropriate contact pressures on the overlapping area. The experimental work was carried out in unit cells and involved the fabrication of the riveted joints and the evaluation of their electrical resistance at different service temperatures. Comparisons with the bolted joints that were fabricated and tested for reference purposes show that injection riveted joints provide lower values of electrical resistance and require much less space for assembly due to the absence of material protrusions above and below their surfaces. Numerical simulation with finite elements allows the relating of the reduction in electrical resistance with the changes in the electric current flow when the bolts are replaced by the new type of rivets. The experimental and numerical predictions revealed that the new type of rivets experience an increase in electrical resistance of up to 6 μΩ (30%) when the service temperature approaches 105 °C. Still, the resistance at this temperature (26.2 μΩ) is more than 3 times smaller than that of the bolted joints (80.5 μΩ).