Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Use of biochemical tests and machine learning in the search for potential diagnostic biomarkers of COVID-19, HIV/AIDS, and pulmonary tuberculosisPublication . Cobre, Alexandre; Morais, Amiel; Selege, Fosfato; Stremel, Dile; Wiens, Astrid; Ferreira, Luana; Tonin, Fernanda; Pontarolo, RobertoThis study aims to develop, validate, and evaluate machine learning algorithms for predicting the diagnosis of coronavirus disease (COVID-19), human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), pulmonary tuberculosis (TB), and HIV/TB co-infection. We also investigated potential biomarkers associated with the diagnosis. Data from biochemical and hematological tests of infected and controls were collected in a single general hospital, totalizing 6,418 patients. The discriminant analysis by partial least squares (PLS-DA) model had the highest performance in predicting the diagnosis of COVID-19, HIV/AIDS, TB, and HIV/TB co-infection with an accuracy of 94, 97, 95, and 96%, respectively. The biomarkers calcium, lactate dehydrogenase, red blood cells (RBC), white blood cells, neutrophils, basophils, eosinophils, hemoglobin, and hematocrit were associated with COVID-19. HIV infection was associated with mean corpuscular volume, platelets, neutrophils, and mean platelet volume. Red blood cell distribution width and urea were associated with infection by Mycobacterium tuberculosis. The following biomarkers were associated with HIV/TB co-infection: lymphocytes, RBC, hematocrit, hemoglobin, aspartate transaminase, alanine transaminase, and glycemia. The PLS-DA model can optimize COVID-19, HIV/AIDS, TB, and HIV/TB co-infection diagnostics. Some biomarkers were potential diagnostic indicators and could be evaluated during the screening of these diseases.
- Novel COVID-19 biomarkers identified through multi-omics data analysis: N-acetyl-4-O-acetylneuraminic acid, N-acetyl-L-alanine, N-acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristatePublication . Cobre, Alexandre de Fátima; Alves, Alexessander Couto; Gotine, Ana Raquel; Domingues, Karime Zeraik; Lazo, Raul Edison; Ferreira, Luana Mota; Tonin, Fernanda; Pontarolo, RobertoThis study aims to apply machine learning models to identify new biomarkers associated with the early diagnosis and prognosis of SARS-CoV-2 infection. Plasma and serum samples from COVID-19 patients (mild, moderate, and severe), patients with other pneumonia (but with negative COVID-19 RT-PCR), and healthy volunteers (control) from hospitals in four different countries (China, Spain, France, and Italy) were analyzed by GC-MS, LC-MS, and NMR. Machine learning models (PCA and PLS-DA) were developed to predict the diagnosis and prognosis of COVID-19 and identify biomarkers associated with these outcomes. A total of 1410 patient samples were analyzed. The PLS-DA model presented a diagnostic and prognostic accuracy of around 95% of all analyzed data. A total of 23 biomarkers (e.g., spermidine, taurine, L-aspartic, L-glutamic, L-phenylalanine and xanthine, ornithine, and ribothimidine) have been identified as being associated with the diagnosis and prognosis of COVID-19. Additionally, we also identified for the first time five new biomarkers (N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate) that are also associated with the severity and diagnosis of COVID-19. These five new biomarkers were elevated in severe COVID-19 patients compared to patients with mild disease or healthy volunteers. The PLS-DA model was able to predict the diagnosis and prognosis of COVID-19 around 95%. Additionally, our investigation pinpointed five novel potential biomarkers linked to the diagnosis and prognosis of COVID-19: N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. These biomarkers exhibited heightened levels in severe COVID-19 patients compared to those with mild COVID-19 or healthy volunteers.
- Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learningPublication . Cobre, Alexandre de Fátima; Surek, Monica; Stremel, Dile Pontarolo; Fachi, Mariana Millan; Borba, Helena Hiemisch; Tonin, Fernanda; Pontarolo, RobertoObjective: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. Material and methods: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe, and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG, and KNN. Results: The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity, and fatality of COVID-19 of 93%, 94%, and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine, and 5,6-dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. Conclusion: The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity, and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients’ serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.