Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning
    Publication . Cobre, Alexandre de Fátima; Surek, Monica; Stremel, Dile Pontarolo; Fachi, Mariana Millan; Borba, Helena Hiemisch; Tonin, Fernanda; Pontarolo, Roberto
    Objective: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. Material and methods: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe, and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG, and KNN. Results: The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity, and fatality of COVID-19 of 93%, 94%, and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine, and 5,6-dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. Conclusion: The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity, and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients’ serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.
  • Accuracy of COVID-19 diagnostic tests via infrared spectroscopy: a systematic review and meta-analysis
    Publication . Cobre, Alexandre de Fátima; Fachi, Mariana Millan; Domingues, Karime Zeraik Abdalla; Lazo, Raul Edison Luna; Ferreira, Luana Mota; Tonin, Fernanda; Pontarolo, Roberto
    This study aims to synthesize the evidence on the accuracy parameters of COVID-19 diagnosis methods using infrared spectroscopy (FTIR). A systematic review with searches in PubMed and Embase was performed (September 2023). Studies reporting data on test specificity, sensitivity, true positive, true negative, false positive, and false negative using different human samples were included. Meta-analysis of accuracy estimates with 95 % confidence intervals and area under the ROC Curve (AUC) were conducted (Meta-Disc 1.4.7). Seventeen studies were included - all of them highlighted regions 650-1800 cm-1 and 2300-3900 cm-1 as most important for diagnosing COVID-19. The FTIR technique presented high sensitivity [0.912 (95 %CI, 0.878-0.939), especially in vaccinated [0.959 (CI95 %, 0.908-0.987)] compared to unvaccinated [0.625 (CI95 %, 0.584-0.664)] individuals for COVID-19. Overall specificity was also high [0.886 (95 %CI, 0.855-0.912), with increased rates in vaccinated [0.884 (CI95 %, 0.819-0.932)] than in unvaccinated [0.667 (CI95 %, 0.629-0.704)] patients. These findings reveal that FTIR is an accurate technique for detecting SARS-CoV-2 infection in different biological matrices with advantages including low cost, rapid and environmentally friendly with minimal preparation analyses. This could lead to an easy implementation of this technique in practice as a screening tool for patients with suspected COVID-19, especially in low-income countries.