Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matterPublication . Oliveira, Cesar; Martins, Natercia; Mirante, Fátima; Caseiro, Alexandre; Pio, Casimiro; Matos, Manuel; Silva, Hugo; Oliveira, Cristina; Camões, FilomenaParticulate matter samples were collected in a road tunnel in Lisbon (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) and at two urban locations representing roadside and background stations (PM2.5 and PM2.5-10). Samples were analysed for organic and elemental carbon (OC and EC), n-alkanes, n-alkenes, hopanes, some isoprenoid compounds, and steranes. Particulate matter concentrations in the tunnel were 17-31 times higher than at roadside in the vicinity, evidencing an aerosol origin almost exclusively in fresh vehicle emissions. PM0.5 in the tunnel comprised more than 60% and 80% of the total OC and EC mass in PM10, respectively. Concentrations of the different aliphatic groups of compounds in the tunnel were up to 89 times higher than at roadside and 143 times higher than at urban background. Based on the application of hopane-to-OC or hopanes-to-EC ratios obtained in the tunnel, it was found that vehicle emissions are the dominant contributor to carbonaceous particles in the city but do not represent the only source of these triterpenic compounds. Contrary to what has been observed in other studies, the Sigma hopane-to-EC ratios were higher in summer than in winter, suggesting that other factors (e.g. biomass burning, dust resuspension, and different fuels/engine technologies) prevail in relation to the photochemical decay of triterpenoid hydrocarbons from vehicle exhaust
- OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbonPublication . Casimiro Pio; Cerqueira, Mario; Harrison, Roy M.; Nunes, Teresa; Mirante, Fátima; Alves, Célia; Oliveira, Cesar; Sanchez de la Campa, Ana; Artinano, Begona; Matos, ManuelThis study explores a large set of OC and EC measurements in PM(10) and PM(2.5) aerosol samples, undertaken with a long term constant analytical methodology, to evaluate the capability of the OC/EC minimum ratio to represent the ratio between the OC and EC aerosol components resulting from fossil fuel combustion (OC(ff)/EC(ff)). The data set covers a wide geographical area in Europe, but with a particular focus upon Portugal, Spain and the United Kingdom, and includes a great variety of sites: urban (background, kerbside and tunnel), industrial, rural and remote. The highest minimum ratios were found in samples from remote and rural sites. Urban background sites have shown spatially and temporally consistent minimum ratios, of around 1.0 for PM(10) and 0.7 for PM(2.5).The consistency of results has suggested that the method could be used as a tool to derive the ratio between OC and EC from fossil fuel combustion and consequently to differentiate OC from primary and secondary sources. To explore this capability, OC and EC measurements were performed in a busy roadway tunnel in central Lisbon. The OC/EC ratio, which reflected the composition of vehicle combustion emissions, was in the range of 03-0.4. Ratios of OC/EC in roadside increment air (roadside minus urban background) in Birmingham, UK also lie within the range 03-0.4. Additional measurements were performed under heavy traffic conditions at two double kerbside sites located in the centre of Lisbon and Madrid. The OC/EC minimum ratios observed at both sites were found to be between those of the tunnel and those of urban background air, suggesting that minimum values commonly obtained for this parameter in open urban atmospheres over-predict the direct emissions of OC(ff) from road transport. Possible reasons for this discrepancy are explored. (C) 2011 Elsevier Ltd. All rights reserved.
- Size-segregated chemical composition of aerosol emissions in an urban road tunnel in PortugalPublication . Pio, Casimiro; Mirante, Fátima; Oliveira, Cesar; Matos, Manuel; Caseiro, Alexandre; Oliveira, Cristina; Querol, Xavier; Alves, Célia; Martins, Natércia; Cerqueira, Mário; Camões, Filomena; Silva, Hugo; Plana, FelicianoAn atmospheric aerosol study was performed in 2008 inside an urban road tunnel, in Lisbon, Portugal. Using a high volume impactor, the aerosol was collected into four size fractions (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) and analysed for particle mass (PM), organic and elemental carbon (OC and EC), polycyclic aromatic hydrocarbons (PAH), soluble inorganic ions and elemental composition. Three main groups of compounds were discriminated in the tunnel aerosol: carbonaceous, soil component and vehicle mechanical wear. Measurements indicate that Cu can be a good tracer for wear emissions of road traffic. Cu levels correlate strongly with Fe, Mn, Sn and Cr, showing a highly linear constant ratio in all size ranges, suggesting a unique origin through sizes. Ratios of Cu with other elements can be used to source apportion the trace elements present in urban atmospheres, mainly on what concerns coarse aerosol particles. (C) 2013 Elsevier Ltd. All rights reserved.
- Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, PortugalPublication . Oliveira, Cesar; Martins, Natércia; Tavares, João; Pio, Casimiro; Cerqueira, Mário; Matos, Manuel; Silva, Hugo; Oliveira, Cristina; Camões, FilomenaAtmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 mu m. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products. (c) 201 1 Elsevier Ltd. All rights reserved.