Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Integration of forming operations on hybrid additive manufacturing systems based on fusion weldingPublication . Pragana, João; Cristino, Valentino A. M.; Bragança, Ivo; Silva, Carlos; Martins, PauloThis paper is focused on the integration of metal forming operations in hybrid systems that combine additive manufacturing (AM) by gas metal wire arc and subtractive manufacturing by machining. The investigation is carried out in AISI 316L stainless steel wire and draws from tensile testing to incremental sheet forming of truncated conical shapes. Commercial sheets from the same material are utilized for comparison purposes. Thickness measurements, digital image correlation (DIC), circle grid analysis (CGA) and microstructural and scanning electron microscopy (SEM) observations are carried out to understand how different is the mechanical behaviour of the deposited metal from that of commercial metal sheets and how significant is the influence of the deposited metal microstructure on its overall formability. Results confirm that integration of metal forming operations in hybrid AM routes is feasible despite the formability of deposited metal being smaller than that of the commercial metal sheets due to the strong anisotropy induced by the dendritic based microstructure of the deposited metal. Incremental forming of two deposited parts also allows concluding that integration of metal forming operations in hybrid AM systems is a step towards green and sustainable manufacturing by extending their field of applicability to the fabrication of complex ready-to-use parts requiring combination of different processes.
- Integration of tube end forming in wire arc additive manufacturing: An experimental and numerical investigationPublication . Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, PauloIntegration of tube end forming operations in metal additive manufacturing routes has a great potential for the fabrication of customized features in additively deposited hollow parts. This paper is focused on the integration of tube expansion with rigid tapered conical mandrels to highlight the advantages in the construction of overhanging flares derived from the elimination of support structures and prevention of humping. The work draws from the mechanical and formability characterization of stainless steel AISI 316L tubes produced by wire arc additive manufacturing (WAAM) to the experimental and numerical simulation of the construction of over hanging flares by tube expansion. Strain loading paths obtained from digital image correlation and finite element analysis combined with the strain values at the onset of necking and fracture allow determining the critical ductile damage that additively deposited tubes can safely withstand. Results show that despite formability of additively deposited tubes being influenced by a dendritic based microstructure, their performance is adequate for tube end forming operations, such as tube expansion, to be successfully integrated in metal additive manufacturing without the need of using expensive hardware and complex deposition strategies.
- Revisiting the ring hoop test in additively manufactured metal tubesPublication . Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, P. A. F.This paper is focussed on the mechanical and formability characterisation of wire-arc additive manufactured (WAAM) AISI 316-L stainless-steel tubes. The methodology to be presented involved carrying out tension and ring hoop tension tests on specimens extracted from the tube longitudinal, transverse and inclined directions. The force evolutions, acquired from the load cells, and the strain measurements, retrieved from digital image correlation and from thickness measurements along the cracks, allowed obtaining the stress-strain curves, the strain paths and the onset of failure by fracture for the three different tube directions. Special attention was paid to the ring hoop test, which was revisited to determine the appropriateness of using ring specimens with one or two dumbbell geometries. The originality of using the ring hoop tension test in WAAM tubes with strong anisotropic behaviour allowed obtaining strain loading paths that range from plane strain to pure shear deformation conditions. Resort to commercial AISI 316-L stainless-steel tubes during the presentation is included for reference purposes.
- Expansion of additive-manufactured tubes: deformation and metallurgical analysisPublication . Pragana, João; Rosa, Luis G.; Bragança, Ivo; Silva, Carlos; Martins, PauloHerein, the mechanical and metallurgical feasibility of integrating tube end-forming operations with additive manufacturing is investigated. The work makes use of wire-arc additively manufactured AISI 316L stainless steel preforms that are subsequently machined into tubes and expanded with a tapered conical punch. Experimental measurements of force, surface strains, thickness, and microhardness combined with microstructure observations and fractography of the fractured surfaces are utilized to characterize plastic deformation and formability limits of the additively manufactured tubes and understand the main differences against the results obtained from commercial wrought tubes of the same material. Results show that the material deformation characteristics, namely, the evolution of microhardness along the expanded tube length, and the formability limits by necking and fracture, are strongly influenced by the columnar microstructure originated by a noncyclic dendritic growth aligned with the building direction. Still, results demonstrate that the additively manufactured AISI 316L tubes are ductile enough to be successfully included in hybrid additive manufacturing routes.