Repository logo
 
Loading...
Profile Picture
Person

da Fonseca Matos Pragana, João Pedro

Search Results

Now showing 1 - 2 of 2
  • A new joining by forming process to produce lap joints in metal sheets
    Publication . Pragana, João; Silva, Carlos; Bragança, Ivo; Alves, Luís; Martins, Paulo
    This paper proposes a new joining by forming process to produce lap joints in metal sheets. The process combines partial cutting and bending with mechanical interlocking by sheet-bulk compression of tabs in the direction perpendicular to thickness. The lap joints are flat with all the plastically deforming material contained within the thickness of the two sheets partially placed over one another. The design of the lap joints is performed by a simple analytical model and the overall concept is validated by means of numerical modelling and experimentation. Destructive shear tests demonstrate the effectiveness and performance of the new proposed lap joints. (C) 2018 Published by Elsevier Ltd on behalf of CIRP.
  • Joining by forming of metal-polymer sandwich composite panels
    Publication . Pragana, João; Contreiras, Tomás R. M.; Bragança, Ivo; Silva, Carlos; Alves, Luís; Martins, Paulo
    This article presents new joining-by-forming processes to assemble longitudinally two metal-polymer sandwich composite panels perpendicular to one another. Process design draws from an earlier development of the authors for metal sheets to new concepts based on the combination of sheet-bulk forming with mortise-and-tenon joints. Selected examples obtained from experimentation and finite element modelling give support to the presentation. A new three-stage joining by the forming process is capable of producing mechanically locked joints with larger and stiffer flat-shaped heads than those fabricated by alternative single- or two-stage solutions. Failure in the new three-stage joining by the forming process is found to take place by cracking instead of disassembling after unbending the flat-shaped head of the joint back to its original shape. The required forming forces to produce the new metal-polymer joints are below 15 kN, allowing them to be an effective, easy-to-implement alternative to existing solutions based on adhesive bonding, welding and mechanical fastening.