Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Building up DNA, bit by bit: a simple description of chain assemblyPublication . Foffi, Riccardo; SCIORTINO, Francesco; Tavares, Jose; Teixeira, PauloWe simulate the assembly of DNA copolymers from two types of short duplexes (short double strands with a single-stranded overhang at each end), as described by the oxDNA model. We find that the statistics of chain lengths can be well reproduced by a simple theory that treats the association of particles into ideal (i.e., non-interacting) clusters as a reversible chemical reaction. The reaction constants can be predicted either from SantaLucia's theory or from Wertheim's thermodynamic perturbation theory of association for spherical patchy particles. Our results suggest that theories incorporating very limited molecular detail may be useful for predicting the broad equilibrium features of copolymerisation.
- Patchy particles at a hard wall: orientation-dependent bondingPublication . Teixeira, Paulo; SCIORTINO, FrancescoThe well-known and widely used Wertheim thermodynamic perturbation theory (TPT) of associating fluids averages over the orientational dependence of the bonding interactions. For this reason, density functional theories based on the otherwise very successful TPT have been unable to describe the structure of patchy particle fluids at hard walls, when the coupling of positional and orientational degrees of freedom becomes importante at low temperatures [N. Gnanetal., J. Chem. Phys. 137, 084704 (2012)]. As a first attempt at remedying this, we propose to introduce into the theory an additional, nonbonding, anisotropic interparticle potential that enforces end-to-end alignment of two-patch particles. Within the simplest mean-field approximation, this additional potential does not change the thermodynamics of the bulk system and hence preserves its phase diagram but has the qualitatively correct effect on the order parameter and density profiles at a hard wall, as determined from computer simulation.
- Equilibrium self-assembly of colloids with distinct interaction sites: Thermodynamics, percolation, and cluster distribution functionsPublication . Tavares, Jose; Teixeira, Paulo; Gama, Margarida; SCIORTINO, FrancescoWe calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
- Re-entrant phase behaviour of network fluids: A patchy particle model with temperature-dependent valencePublication . Russo, J.; Tavares, Jose; Teixeira, Paulo; Gama, Margarida; SCIORTINO, FrancescoWe study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]
- Reentrant Phase Diagram of Network FluidsPublication . Russo, J.; Tavares, Jose; Teixeira, Paulo; Gama, Margarida; SCIORTINO, FrancescoWe introduce a microscopic model for particles with dissimilar patches which displays an unconventional "pinched'' phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)]. The model-based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks-is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.