Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Influence of base material properties on copper and aluminium-copper explosive welds
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    The influence of base material properties on the interfacial phenomena in copper and aluminium-copper explosive welds was studied. Two explosive mixtures with different detonation velocities were tested. Sound aluminium-copper joints with effective bonding were achieved by using an explosive mixture with a lower detonation velocity. High energy explosives led to extensive interfacial melting, preventing the production of consistent dissimilar welds. Unlike to the similar copper joints, the aluminium-copper welds presented very asymmetrical interfacial waves, rich in intermetallic phases and displaying a curled morphology. The interaction of the materials in dissimilar welding was found to be completely different depending on the positioning of each alloy in the joint, i.e. positioned as the flyer or as the baseplate.
  • Weldability of aluminium-copper in explosive welding
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    A large number of aluminium-copper explosive welds were produced under different welding conditions to perform a broad analysis of the weldability of this combination. The influence of the explosive mixture and the relative positioning of the plates on the welding results were analysed. When the aluminium alloy is positioned as the flyer plate, continuous interfacial melting occurred under the low values of energy lost by the collision, and collision point velocity. This proved that the weldability of the aluminium-copper combination is higher when the copper is positioned as the flyer. A mismatch between the experimental results and the existing theories that define the requirements for achieving consistent welds was noticed. Especially for welds produced using the aluminium alloy as the flyer, the experiments proved to be more restrictive than the theories. These theories, despite being widely applied in dissimilar welding literature, present several limitations concerning aluminium-copper welding. New approaches considering the formation of intermetallic phases at the interface, the properties of both welded metals, and/or the difference in their properties should be developed.