Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Proactive response to tackle the threat of emerging drugs: Synthesis and toxicity evaluation of new cathinonesPublication . Gaspar, Helena; Bronze, Soraia; Oliveira, Catarina; Victor, Bruno; Machuqueiro, Miguel; Pacheco, Rita; Caldeira, Maria João; Santos, SusanaThe emergence of potentially dangerous new psychoactive substances (NPS) imposes enormous challenges on forensic laboratories regarding their rapid and unambiguous identification. Access to comprehensive databases is essential for a quick characterization of these substances, allowing them to be categorized according to national and international legislations. In this work, it is reported the synthesis and structural characterization by NMR and MS of a library encompassing 21 cathinones, 4 of which are not yet reported in the literature, but with structural characteristics that make them a target for clandestine laboratories. This in-house library will be an important tool accessible to forensic laboratories, for the quick identification of seized NPS. The in vitro cytotoxicity of all cathinones was assessed in HepG2 cells, to have a preliminary but effective indication of their human hepatotoxicity potential. The two new cathinones DMB (8) and DMP (9) were the more cytotoxic, followed by the already seized mephedrone (2), 3,4-DMMC (3), 4-MDMC (7), NEB (12) with EC50 values ranging from 0.81 mM for (3) to 1.28 mM for (2). Results suggest an increase of cytotoxicity with the increase of the chain length of the acyl moiety and with the substitution (with one or two methyl groups) in the aromatic ring. The nature of the amine moiety seems to play only a minor role in the cytotoxic effect. Molecular dynamics simulations were performed to evaluate the molecular details related with the observed cytotoxicities. Although these studies indicated that cathinones are able to cross lipid bilayers with relative ease, when in their neutral forms, it was observed only a partial correlation between lipophilicity and cytotoxicity, indicating that membrane trafficking may not be the only key factor influencing the bioactivity of these compounds. This work is a valuable contribution to the forensic science field since a quick identification of novel cathinones is urgent to match their rapid increase in the market.
- Insights on the mechanism of action of INH-C-10 as an antitubercular prodrugPublication . Vila-Viçosa, Diogo; Victor, Bruno; Ramos, Jorge; Machado, Diana; Viveiros, Miguel; Switala, Jacek; Loewen, Peter C.; Elvas Leitao, Ruben; Martins, Filomena; Machuqueiro, MiguelTuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N'-acylated INH derivative with a long alkyl chain (INH-C-10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N'-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C-10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s(-1), compared with INH-C-2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C-10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C-10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C-10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (531ST and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.