Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Forwarding in energy-constrained wireless information centric networks
    Publication . Marques, Daniel; Senna, Carlos; Luís, Miguel
    Information Centric Networks (ICNs) have been considered one of the most promising candidates to overcome the disadvantages of host-centric architectures when applied to IoT networks, having the potential to address the challenges of a smart city. One of the foundations of a smart city is its sensory capacity, which is obtained through devices associated with the IoT concept. The more sensors spread out, the greater the ability to sense the city. However, such a scale demands high energy requirements and an effective improvement in the energy management is unavoidable. To improve the energy management, we are proposing an efficient forwarding scheme in energy-constrained wireless ICNs. To achieve this goal, we consider the type of devices, their internal energy and the network context, among other parameters. The proposed forwarding strategy extends and adapts concepts of ICNs, by means of packet domain analysis, neighbourhood evaluation and node sleeping and waking strategies. The proposed solution takes advantage of the neighbourhood to be aware of the moments to listen and forward packets in order to consistently address mobility, improving the quality of content delivery. The evaluation is performed by simulation with real datasets of urban mobility, one from the lagoon of “Ria de Aveiro” and the other from a vehicular network in the city of Porto. The results show that the proposed forwarding scheme resulted in significant improvements in network content availability, in the overall energy saving and, consequently, in the network lifetime.
  • Insights from the experimentation of Named Data Networks in mobile wireless environments
    Publication . Gameiro, Luís; Senna, Carlos; Luís, Miguel
    The Information-Centric Network (ICN) paradigm has been touted as one of the candidates for the Internet of the future, where the Named Data Network (NDN) architecture is the one leading the way. Despite the large amount of works published in the literature targeting new implementations of such architecture, covering different network topologies and use cases, there are few NDN implementations in real networks. Moreover, most of these real-world NDN implementations, especially those addressing wireless and wired communication channels, are at a small scale, in laboratory environments. In this work, we evaluate the performance of an NDN-based implementation in a mobile wireless network, as part of a smart city infrastructure, making use of multiple wireless interfaces. We start by showing how we have implemented the NDN stack in current network nodes of the smart city infrastructure, following a hybrid solution where both TCP/IP and NDN paradigms can coexist. The implementation is evaluated in three scenarios, targeting different situations: mobility, the simultaneous use of different wireless interfaces and the network characteristics. The results show that our implementation works properly and insights about the correct NDN parameterization are derived.